Как получают водород для автомобилей

Плюсы и минусы водородного топлива

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Водородное топливо уже давно занимает ведущие позиции среди других источников энергии. Обладающий уникальными свойствами, водород по праву называют топливом ближайшего будущего. По сравнению с дизельным и бензиновым топливом, у него больший КПД, а также экологичность. Попытаемся разобраться, почему его до сих пор не используют?

История двигателя внутреннего сгорания на водороде

Применение водорода в качестве топлива началось еще в XIX веке, когда французский изобретатель Франсуа Исаака де Риваз в 1806 году разработал самый первый в мире ДВС, потребляющий водородное топливо. Необходимую электрическую энергию он получал методом электролиза воды. Позже бельгийский изобретатель Жан Жозеф Этьен Ленуар заставил самоходный экипаж двигаться с помощью энергии водорода. Так бы водород и служил бы человечеству в качестве основного топлива, но в 1870 году в ДВС стали применять бензин, сведя на нет первые опыты с водородным топливом.

Водородное топливо в блокадном Ленинграде
О водороде вспомнили только в блокадном Ленинграде в конце 1941 года, благодаря военному технику Б. И. Шелищу, который предложил использовать отработанный водородный газ для заправки автотранспорта. От налетов вражеской авиации Ленинград защищался зенитными орудиями, а также заградительными аэростатами, наполненными водородом, чтобы помешать прицельной бомбардировке города.

Когда водородные аэростаты спускались на землю, их использовали в качестве альтернативного источника топлива. Всего лишь за неделю группа техников переоборудовала на водородное топливо 600 грузовиков ГАЗ. После войны об этом изобретении снова забыли, перейдя опять на бензин.

В 1970 годах, когда произошел энергетический кризис, люди опять оценили необходимость альтернативных источников энергии. Так, Украинским ИПМ был переоборудован весь свой автомобильный парк водородное топливо, отлично справившись с топливным кризисом. Об успешных экспериментах снова забыли после распада советского союза.

Современные автомобили на водороде находятся пока в стадии проектирования, а вернее выпускать серийно опытные модели пока не собираются из-за неразвитой инфраструктуры заправок автотранспорта водородным топливом. В промышленных масштабах получить водород электролизом воды недешево, поэтому автокомпании пока не спешат на него переходить, ожидая более дешевый и простой способ получения топлива.

Преимущества водородных ДВС

Главное неоспоримое преимущество автомобилей на водороде – это высокая экологичность, так как продуктом горения водорода является водяной пар. Конечно, при этом сгорают еще различные масла, но токсичных выбросов гораздо меньше, чем у бензиновых выхлопов.

Отсутствие дорогостоящих систем топливоподачи, которые к тому же опасны и ненадежны.

КПД электродвигателя на водородном топливе намного выше, чем у ДВС.

Имеются и недостатки у автомобилей на водородном топливе:

Дорогой и сложный способ получений топлива в промышленных объемах.

Отсутствие водородной инфраструктуры заправок автотранспорта.

Не разработаны стандарты транспортировки, хранения и применения топлива на водороде.

Несовершенство технологий хранения такого топлива.

Дорогие водородные элементы.

Большой вес транспорта. Работа электродвигателя на водородном топливе требуют водородные преобразователи тока и мощные аккумуляторные батареи, которые весят не мало, а также обладают внушительными габаритами.

Существует опасность возгорания и взрыва при работе водорода с традиционным топливом.

Ознакомившись с достоинствами и недостатками водородного топлива можно понять, почему до сих пор откладывается серийный выпуск водородных автомобилей. Однако из-за ухудшающейся экологии этот альтернативный источник энергии может оказаться единственным решением проблемы.

Производители транспорта на водородном топливе

Мировые производители все же проводят испытание в этой сфере и даже выпускают автотранспорт на водородном топливе:

Toyota — модель Toyota Highlander FCHV;

Ford Motor Company проводит испытания с концептом Focus FCV;

Honda со своей моделью Honda FCX;

Hyundai выпускает Tucson FCEV;

Daimler AG отвечает за модель Mercedes-Benz A-Class;

Все же водород является единственной приемлемой экологической энергией с огромным будущим. От ученых зависит только разработать инфраструктуру, обнаружить способ добычи водорода, наладить порядок в инструкциях по эксплуатации топлива, и тогда навсегда уже забыть о выхлопных газах, нефтяных вышках и других проблемах бензиновой зависимости.

Источник

Водородное топливо

LH2 является самым экологически чистым видом моторного топлива, поэтому его перспективы очевидны

Водородное топливо

В Австралии на бурых углях в штате Виктория отрабатывается технология технология газификации угля с последующим выделением водорода, вернее удаления серы, ртути и двуокиси углерода (СО2).

Водород

Водород (H) является самым распространенным элементом на Земле, но в обычных условиях он не встречается ни в виде водорода H, ни в виде газообразного водорода (H2).

Благодаря своим характеристикам он легко вступает в реакцию с другими органическими соединениями с образованием, например, воды (H2O).

Во время этой реакции образования воды из водорода и воздуха выделяется энергия, которую можно использовать в качестве электричества.

Чтобы сделать эту реакцию полезной для промышленного производства электроэнергии, необходимо произвести водород, например из воды путем разделения атомов на кислород и водород посредством электролиза.

Есть другие технологии:

Реакция взаимодействия водорода с кислородом происходит с выделением тепла.

Если взять 1 моль H2 (2 г) и 0,5 моль O2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

после завершения реакции образуется 1 моль H2O (18 г) с выделением энергии 285,8 кДж/моль.

1 м³ водорода весит 89,8 г (44,9 моль), поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии.

1 кВт*ч = 3600 кДж, поэтому получим 3,56 кВт*ч электроэнергии.

Целесообразность перехода на водородное топливо можно оценить, сравнив имеющийся тариф на 1 кВт*ч электричества и, к примеру, стоимость 1 м³ газа или стоимость другого энергоносителя.

Получение водорода

2NaCl + 2H2O → H2↑ + 2NaOH + Cl2

Конверсия с водяным паром: CH4 + H2O ⇄ CO + 3H2 (1000 °C) Каталитическое окисление кислородом: 2CH4 + O2 ⇄ 2CO + 4H2

Физические свойства

Химические свойства

Молекулы водорода Н довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении.

Он может «отнимать» кислород от некоторых оксидов, например:

Реакция восстановления противоположна реакции окисления.

Обе эти реакции всегда протекают одновременно как 1 процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

С галогенами образует галогеноводороды:

F2 + H2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 + H2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

Источник

Как работает водородный двигатель и какие у него перспективы

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Где применяют водородное топливо?

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Плюсы водородного двигателя

Минусы водородного двигателя

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Источник

Почему водородные автомобили проигрывают электромобилям?

О том, как еще далек от нас водородный автомобиль

Водород (H2) – это химический элемент, самый легкий газ получаемый из углеводородов, биомассы, мусора. Водород используют в нефтепереработке для гидроочистки, гидрокрекинга, для производства аммиака, при гидрогенизации угля, нефти и как альтернативный источник топлива (электроэнергии) для автомобилей. В автомобили ставят топливные элементы вместо бензобака, и заправляют туда H2 под давлением. При нажатии на педаль газа, в воздухозаборник поступает кислород, который вступает в реакцию с водородным элементом, отчего вырабатывается электричество. Электричество раскручивает электромотор, автомобиль начинает движение.

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

H2 как альтернативное топливо

Чем интересен водород, как альтернативный источник топлива:

Преимущества водородных автомобилей над электромобилями:

Модели автомобилей на водородеКак получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Выпускают ограниченной серией:

Испытывают:

Ограниченными сериями выпускаются BMW Hydrogen 7 и Mazda RX-8 hydrogen – двухтопливные модели использующие либо жидкий водород, хранящийся в баке при температуре не выше −253 °C, либо бензин. Принцип тот же, что и в автомобилях на газу. В отличие от FCEV двухтопливные модели выпускают вредные выхлопные газы, двигатели не такие мощные и быстрее изнашиваются.
На водородных топливных элементах (FCEV) конструируют спецтехнику: автобусы, погрузочно-разгрузочное оборудование (например, вилочные погрузчики), наземно-вспомогательное оборудование, средние и большие грузовики. Активно в этой сфере работает американская компания Plug Power Inc (PLUG). PLUG выпускает комплектующие для спецтехники на водороде. Недавно PLUG провела симпозиум, на котором заявила:

Honda огласила цель по поэтапному отказу от бензиновых двигателей в Северной Америке к 2040 году.
Daimler Trucks и Volvo стали партнерами в Европе, чтобы попытаться снизить себестоимость FCEV и сделать водород выгодным для дальних перевозок.

Водород и проблемы с экологией

Водород обилен в природе. Он хранится в воде (H2O), углеводородах (метан, CH4) и других органических веществах. Проблема водорода как топлива в эффективности его извлечения.
При извлечении водорода, в зависимости от источника, в атмосферу попадают вредные выбросы. При этом, сам автомобиль работающий на водороде, в качестве выхлопных газов выделяет только водяной пар и теплый воздух, у него нулевой уровень выбросов.

СПОСОБЫ ДОБЫЧИ ВОДОРОДА

Паровой риформинг метана

Способ отделения водорода путем парового метанового риформинга применим к ископаемому топливу, например, к природному газу – его нагревают и добавляют катализатор. Природный газ не возобновляемый источник энергии, но пока он есть и добывается из недр земли. Министерство энергетики США утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем в бензиновых автомобилях. Производство реформированного водорода уже запущено на полную катушку и добывать водород таким способом дешевле, чем водород из других источников.

Газификация биомассы

Водород также добывают из биомассы – сельскохозяйственных отходов, отходов животноводства и сточных вод. Используя процесс называемый газификация, биомассу помещают под воздействие температуры, пара, кислорода, чтобы образовать газ, который после обработки дает чистый водород. «Существуют целые полигоны для сбора сельскохозяйственных отходов – готовые источники водорода, потенциал которых недооценен и тратится впустую», сетует директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.

Электролиз

Электролиз – процесс отделение водорода из воды электрическим током. Этот способ звучит проще, чем возня с ископаемым топливом и отходами животноводства, но у него есть недостатки. Электролиз конкурентоспособен в тех районах, где электричество дешевое (в России этом могла бы быть Иркутская область – 8 электростанций на область, 1 рубль 6 копеек за киловатт-час).
Солнечные водородные станции Honda используют энергию солнца и электролиз, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция создает 5 700 литров водорода в год (этого топлива достаточно для одного автомобиля со средним годовым пробегом). При подключении к электрической сети, станция выдает до 26 тысяч литров в год.

Планы компаний по развитию производства H2

В Токио, недалеко от Токийского залива, построили завод для получения водорода из сточных вод и мусора.
PowerTap планирует построить на водородных АЗС помещения с оборудованием для получения водорода из природного газа и городской воды. Оставшийся углерод будут улавливать, и хранить там же.
Ways2H Inc. огласила планы построить небольшие заводы по переработке водорода возле мусорных свалок. Формула успеха компании Ways2H Inc.: мусор + термохимический процесс = водород. Завод стандартного размера обрабатывает 24 тонны отходов в день, получая от 1 до 1,5 тонны водорода.

Сколько стоит производство водорода

На сколько экономней водородный автомобиль?

В Европе заправка полного бака водорода емкостью в 4.7 килограмма обойдется в 3 369 ₽ (717 ₽ за килограмм). На полном баке Toyota Mirai в среднем проезжает 600 километров, итого 561 ₽ на 100 километров. Для сравнения, цена 95-го бензина в Европе равна 101 ₽, т.е. 10 л. бензина обойдется в 1010 ₽ или 6 060 ₽ за 600 километров [цены на 2018 год.] Из примера видим, что заправка водородного автомобиля в два раза дешевле, чем автомобиля с двигателем внутреннего сгорания.
В России активисты из г. Черноголовки Московской области, ради эксперимента сконструировали собственную водородную станцию, купили Toyota Mirai и посчитали, во сколько обойдется эксплуатация автомобиля. По расчетам владельца машины 100 километров на водороде ему обходится в 250 рублей.

Как заправляют топливные элементы водородом

В 1 килограмме газообразного водорода столько же энергии сколько в 1 галлоне бензина (4,5 литра = 2,8 килограмма). Поскольку в водороде низкая объемная плотность энергии, он хранится в резервуарах высокого давления (топливных элементах) – 5000 или 10000 фунтов на квадратный дюйм (psi) (340 или 680 атмосфер), в виде сжатого газа. Водородные диспенсеры на заправках заполняют такие резервуары за 5 минут. Разрабатываются и другие технологии хранения, включая химическое соединение водорода с металл-гидридом или низкотемпературными сорбционными материалами.

Как работает топливный элемент заполненный водородом

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Прокачивая кислород и водород через катоды и аноды, контактирующие с платиновым катализатором, происходит химическая реакция, в результате которой получается вода и электрический ток. Набор из нескольких элементов (ячеек) необходим, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что увеличивает напряжение.
Ниже смотрите схему работы топливного элемента.

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Где заправлять автомобили водородом?

Карта заправочных станций здесь.
Революция FCEV не начнется без достаточного количества водородных АЗС, поэтому отсутствие инфраструктуры водородных заправочных станций по-прежнему тормозит развитие водорода как альтернативного вида топлива Развитие сетей водородных АЗС идет туго.
В Америке самый большой автопарк FCEV моделей, с концентрацией в штате Калифорния. Заправок там достаточно, но начались проблемы с поставкой водорода. Водители повально отказываются от водородных автомобилей, столкнувшись с пустыми заправками. Подробнее здесь.

Расходы на содержание водородных станций

Как получают водород для автомобилей. Смотреть фото Как получают водород для автомобилей. Смотреть картинку Как получают водород для автомобилей. Картинка про Как получают водород для автомобилей. Фото Как получают водород для автомобилей

Снижение стоимости водородных технологий за счет прогресса

Еще одно препятствие для производителей автомобилей на водородном топливе – цена водородных технологий. Например, набор топливных элементов для автомобилей до настоящего момента, опирается на платину в качестве катализатора. Покупали когда-нибудь колечко из платины для любимой? Цена Вам известна.
Ученые из Лос-Аламосской национальной лаборатории доказали, что замена дорогой платины на более распространенные – железо или кобальт, в качестве катализатора возможна. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Замена платины, заметно снизит себестоимость топливных элементов. Параллельно ученые пытаются снизить себестоимость производства аккумуляторов для электромобилей, подробней здесь.
На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. Mercedes разрабатывает технологию сжатия водорода до давления в 68.95 МПа (мегапаскаль), чтобы эффективней заправлять топливный элемент большим количеством H2. В связке с передовым литий-ионным аккумулятором как дополнительным хранилищем энергии, это увеличит количество энергии на борту автомобиля. «Если все получится, у автомобилей на водороде диапазон движения превысит 1000 км.» считает доктор Герберт Колер, вице-президент Daimler AG.

Министерство энергетики США утверждает, что себестоимость сборки автомобилей с топливным элементом снижены на 30 % за последние три года и на 80 % за последнее десятилетие. Срок службы топливных элементов увеличился вдвое, но этого недостаточно. Для конкурентоспособности с электромобилями срок службы топливных элементов нужно увеличить еще в два раза. Нынешние водородные топливные элементы, «живут» около 2 500 часов (или примерно 120 000 км), но этого мало. «Чтобы конкурировать с другими технологиями, нужно продлить их жизнь до 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.

Развитие технологий водородных топливных элементов снизит себестоимость производство автомобилей за счет упрощения механизмов и систем, но выгоду производители получат только при серийном выпуске. Препятствием на пути к массовому выпуску автомобилей на водороде, стоит отсутствие оптовых поставок запчастей для автомобилей с водородным топливным элементом. Даже автомобиль FCX Clarity, который уже выпускается серией, не обеспечен дополнительными запчастями по оптовым ценам. Автопроизводители решают проблему по-своему, устанавливают топливные элементы водорода в дорогие модели для обкатки. Дорогие автомобили выпускаются в меньшем количестве, чем бюджетные, поэтому и проблем с поставкой запчастей к ним нет. «Мы внедряем «водородную технологию» в люксовые автомобили и следим, как она себя показывают «в народе». Пока рынок принимает водородные автомобили, как лет 10 назад принимал технологию гибридов, автопроизводители в это время наращивают объемы водородных моделей, спускаясь по цепочке к бюджетным авто», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.

В 2005 году канадский производитель протон-обменных топливных элементов, обещал, что к 2010 году будет продавать автокомпаниям от 200 000 до 500 000 топливных элементов в год. Цель так и не была достигнута, топливные элементы в таком количестве заводам были не нужны.

В 2009 году несколько производителей автомобилей подписали совместное письмо о намерениях к 2014 году продавать сотни тысяч автомобилей с водородным двигателем. Этого тоже не произошло.

Получит ли «водородная программа» поддержку государства

Производители автомобилей и строители заправочных сетей сходятся во мнении, что снизить затраты в краткосрочной перспективе без вмешательства со стороны государства не выйдет. Что в США, однако, представляется маловероятным, при всех описанных денежных вливаниях местной администрации Штатов и Министерств.

С министром энергетики Стивеном Чу, администрация Обамы не раз пыталась сократить финансирование программы развития водородных топливных элементов, но сокращения отменял конгресс.

Популярность электрических автомобилей сторонникам водорода кажется абсурдной. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель Honda. Аккумулятор, разработанный для Honda FCX, например, устанавливают и на электромобиль Fit. «Считаем, что водородные топливные элементы в сочетании с электромобилями переплюнут все альтернативные источники энергии, возглавив список самых экономичных машин этого десятилетия».

Недовольны и те, кто платит из своего кармана за строительство новых заправочных станций. Говорят, что не отказались бы от помощи государства до тех пор, пока не увеличится спрос на водородное топливо и не снизятся затраты на возобновляемые источники энергии.

Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro. SunHydro строит водородные заправочные станции на солнечных батареях. Том считает, что целевое снижение налогов могло бы стимулировать предпринимателей вкладывать деньги в строительство водородных станций, работающих от солнечной энергии. «Необходим стимул, чтобы люди вкладывались в такие предприятия», говорит Том. «Инвесторы в трезвом уме, вероятно, не станут вкладывать деньги в строительство водородных заправочных станций».

В России Правительство в 2020 году утвердило план по развитию водородной энергетики в Российской Федерации до 2024 года. В нем говорится:

ПОДВЕДЕМ ИТОГИ:

Минусы водородного топлива:

Плюсы водородного топлива:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *