Как работает мотор автомобиля

Как работает двигатель автомобиля?

Так как же это работает и почему? Что заставляет автомобиль воспроизводить приятную симфонию звуков после поворота ключа в замке зажигания? Как получилось, что двигатель способен привести в движение колеса? Было бы сложно описать последовательно все существующие типы двигателей в мире. Однако существует схема, которая, за исключением нескольких случаев, остается неизменной и на которой проще всего объяснить, как работает двигатель автомобиля, то есть тот тип моторов, который сжигает бензин, дизельное топливо или масло.

Поршень: отсюда начинается всё

Как работает мотор автомобиля. Смотреть фото Как работает мотор автомобиля. Смотреть картинку Как работает мотор автомобиля. Картинка про Как работает мотор автомобиля. Фото Как работает мотор автомобиляПоршневой цикл: схема

Предлагаем вам посмотреть занимательное видео, в котором подробно рассказывается и показывается каким именно образом работаем двигатель внутреннего сгорания автомобиля:

Например, когда указатель тахометра в вашей машине приближается к 2000 об./мин. (2 тысячи оборотов коленвала), это означает, что поршень совершает 4000 ходов в это время, и смесь попадает в цилиндр 1000 раз! Все это за минуту. И всего на один цилиндр. Теперь подумайте, сколько топлива нужно двигателю, если вы «стреляете» в него все время, разгоняя до 6000 оборотов при нажатой педали газа в пол!

Важность моторного масла

Чтобы двигатель работал исправно, очень важно наличие в картере масла. Каждый из нас отлично знает, что, чем лучше скольжение, тем более плавным является движение (вспомните фигурное катание). В принципе, там, где есть движение в двигателе, где одна деталь соприкасается с другой, туда и попадает масло. Его путь начинается с масляного поддона, который расположен под двигателем, масло всасывается специальным насосом, затем масляный насос вдавливает его в трубчатую сборку, которая направляет смазочный растовр в множество мест двигателя.

Представьте, что случилось бы, если бы в течение длительного времени все компоненты двигателя двигались «всухую». Теперь вы, наверное, понимаете, почему так важно время от времени проверять уровень масла в двигателе.

Бензиновый и дизельный моторы: в чем принципиальные отличия?

В чем главное отличие бензинового двигателя от дизельного? Речь идет о принципе зажигания. Бензиновые двигатели имеют искровое зажигание, дизель является самоходным. Что означают эти слова?

Бензиновые двигатели для взрыва в цилиндре используют искру, генерируемую на свече зажигания. В дизельных двигателях всё совсем иначе. В дизельном моторе воздух в цилиндре сжимается поршнем гораздо сильнее. Настолько, что внутри создается высокая температура, достаточная для взрыва смеси в цилиндре без искры. Бензин не возгорается из-за большого давления, соляра (дизельное топливо), наоборот, не горит при нормальных условиях от обычной искры.

Эти «демонические», действительно мощные, производительные моторы, встречаются реже, их можно обнаружить, чаще всего, в Subaru или Porsche. Здесь поршни расположены с обеих сторон коленчатого вала, лицом друг к другу, что делает весь двигатель, по сравнению с другими, очень плоским, но не менее объемным.

Как работает мотор автомобиля. Смотреть фото Как работает мотор автомобиля. Смотреть картинку Как работает мотор автомобиля. Картинка про Как работает мотор автомобиля. Фото Как работает мотор автомобиляРядный двигатель

Когда дело доходит до поршневого устройства, существует еще один тип двигателя, который сильно отличается от остальных. Это двигатель с одним вихревым поршнем, так называемый Двигатель Ванкеля. Также существуют специальные роторные моторы (цилиндры расположены по кругу), сферические моторы (поршень двигается не поступательно, а описывает сферу) и многие другие изобретения.

Источник

Двигатель внутреннего сгорания (устройство и принцип работы).

Как работает мотор автомобиля. Смотреть фото Как работает мотор автомобиля. Смотреть картинку Как работает мотор автомобиля. Картинка про Как работает мотор автомобиля. Фото Как работает мотор автомобиля

Продолжаем познавательную страничку.

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы ДВС:

• Поршневой двигатель внутреннего сгорания;
• Роторно-поршневой двигатель внутреннего сгорания;
• Газотурбинный двигатель внутреннего сгорания.

Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются:

Автономность;
• Универсальность
(сочетание с различными потребителями);
• Невысокая стоимость;
• Компактность;
• Малая масса;
• Возможность быстрого запуска;
• Многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся:

• Высокий уровень шума;
• Большая частота вращения коленчатого вала;
• Токсичность отработавших газов;
• Невысокий ресурс;
• Низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают следующие поршенвые ДВС:

Бензиновые двигатели;
• Дизельные двигатели.

Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Поршневой двигатель внутреннего сгорания имеет следующее общее устройство:

• Корпус;
• Кривошипно-шатунный механизм;
• Газораспределительный механизм;
• Впускная система;
• Топливная система;
• Система зажигания
(бензиновые двигатели);
• Система смазки;
• Система охлаждения;
• Выпускная система;
• Система управления.

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Принцип работы двигателя внутреннего сгорания основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель):

Как работает мотор автомобиля. Смотреть фото Как работает мотор автомобиля. Смотреть картинку Как работает мотор автомобиля. Картинка про Как работает мотор автомобиля. Фото Как работает мотор автомобиля

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

Вот так вот, Друзья! Благодарю за внимание!

Источник

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.

Как работает мотор автомобиля. Смотреть фото Как работает мотор автомобиля. Смотреть картинку Как работает мотор автомобиля. Картинка про Как работает мотор автомобиля. Фото Как работает мотор автомобиля
В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Источник

Как работает двигатель машины?

Как работает мотор автомобиля. Смотреть фото Как работает мотор автомобиля. Смотреть картинку Как работает мотор автомобиля. Картинка про Как работает мотор автомобиля. Фото Как работает мотор автомобиля

Двигатель – один из важнейших элементов автомобиля. На самом деле, это, вероятно, самая важная часть всего автомобиля. И хотя большинство владельцев автомобилей знают, как выглядит двигатель, редко встречаются те, кто знает, как он работает или различные компоненты, необходимые для движения их автомобиля. Понимание того, как работает двигатель и различные процессы, необходимые для преобразования воздуха и топлива в движущую силу, могут помочь вам сэкономить деньги в следующий раз, когда вы идете в авторемонтную мастерскую. Ниже рассмотрим основные принципы как работает двигатель автомобиля.

Как работает мотор автомобиля. Смотреть фото Как работает мотор автомобиля. Смотреть картинку Как работает мотор автомобиля. Картинка про Как работает мотор автомобиля. Фото Как работает мотор автомобиля

Как работает двигатель автомобиля?

Основными компонентами автомобильного двигателя внутреннего сгорания являются следующие:

Двигатель

Блок двигателя

Перечисленные выше компоненты являются самыми важные потому что двигатель также полагается на широкий спектр датчиков и электрические двигатели, чтобы сделать свою работу должным образом. Новые двигатели также укомплектованы небольшими электронными частями и модулями управления для обеспечения их работы.

Различные типы автомобильных двигателей

Автомобильные двигатели бывают всех форм и видов. Каждый из них имеет свои преимущества и неудобства. Некоторые из них созданы для скорости в то время как другие обеспечивают лучшую топливную экономичность. Производители автомобилей стремятся чтобы выбрать конкретный размер двигателя и конфигурацию на основе цели клиентов, их потребностей и их бюджета. Рассмотрим различные типы двигатели и то, для чего они обычно используются.

Количество цилиндров

Самый простой способ классифицировать автомобильные двигатели основан на их общем количестве цилиндров. Наиболее распространенное количество цилиндров – 4, но 6-и 8-цилиндровые двигатели часто встречаются на внедорожниках, спортивных автомобилях и пикапах. Большинство небольших автомобилей начального уровня оснащаются 4-цилиндровыми двигателями из-за снижения производственных затрат с точки зрения дилера, но также и потому, что 4 цилиндра обычно сжигают меньше топлива, чем 8. Более быстрые автомобили и тяжелые грузовики, очевидно, сжигают больше топлива, чем маленький седан.

Конфигурации компоновки

Встроенный

Двигатели с рядными цилиндрами являются наиболее распространенным типом автомобильных двигателей. Все цилиндры сконфигурированы в одну линию и расположены на одной стороне коленчатого вала.

Это, безусловно, самая простая установка двигателя что делает его довольно недорогим по сравнению с другими конфигурациями двигателей. Хотя он занимает мало места с точки зрения ширины, этот двигатель, однако, требует много места в длину, особенно в случае встроенных 6 и 8.

Основной недостаток рядных двигателей заключается в том, что дисбаланс вызван расположением цилиндров на одной линии. Дисбаланс двигателя может привести к серьезным вибрациям, если он не будет правильно контролироваться. Для избежания этого производители автомобилей часто добавляют балансирный вал, соединенный с коленчатый вал работает как противовес.

V-образный

Как следует из их названия, V-образные двигатели являются, действительно, в форме буквы V. цилиндры расположены в два ряда, все они прикреплены к тот же коленчатый вал и они запускаются поочередно. Такая конфигурация позволяет автопроизводителям использовать более короткий и легкий коленчатый вал, как правило создает больше энергии, одновременно уменьшая вибрации. V-образные двигатели обычно предложите значительно больший крутящий момент при низких оборотах в минуту по сравнению с рядными двигателями.

Однако V-образная форма также приносит свои ограничения и результат в очень сложном двигателе часто требуя больше обслуживания которое, внутри поверните, результат в более высоких работать и расходах на техническое обслуживание.

W-образная

W-образные двигатели идентичны и работают точно как и модели “V”, с той разницей, что они удваиваются с помощью расположенных в шахматном порядке рядами цилиндров.

Главным преимуществом W-образных двигателей является то, что большое количество цилиндров может быть установлено в пределах минимального пространства, позволяющее использовать еще более короткий коленчатый вал, чем на V-образном двигателе.

Этот тип двигателя гораздо сложнее чем рядные и v-образные двигатели, особенно если смотреть на головку двигателя и клапанный механизм. Это, вероятно, одна из причин, почему этот тип двигателя в основном используется в авиации или только в автомобилях высокого класса.

Плоские Двигатели

Плоские двигатели являются полностью плоскими: все поршни находятся в одной плоскости, обычно горизонтальной. Цилиндры всегда четны по числу и расположены по обе стороны от коленчатого вала.

Такая конфигурация двигателя очень практична так как он занимает очень мало высоты. Плоские двигатели, таким образом, могут быть расположены очень низко на шасси автомобиля, имея очень низкий центр тяжести, что будет значительно улучшит управляемость автомобиля.

Кроме того, тот факт, что поршни противостоят друг другу с обеих сторон коленчатого вала, это приводит к лучшему балансу двигателя, который также приводит к меньшему количеству вибраций и лучшему общему балансу автомобиля на дороге.

С другой стороны, плоские двигатели часто довольно трудно обслуживать. Типичные работы по техническому обслуживанию, классифицируемые как” быстрые и легкие ” на других типах двигателей, часто гораздо сложнее выполнять на плоском двигателе. Замена свечей зажигания-хороший пример. То, что займет меньше часа, чтобы выполнить на любом другом рядном двигателе, может легко занять до 4-5 часов на двигателе Boxter.

Плоские двигатели часто встречаются в автомобилях с высокой репутацией затрат на техническое обслуживание, таких как Subaru, Porsche и Westfalia и это лишь некоторые из них.

Прямой впрыск или нет

Непосредственный впрыск является наиболее распространенным методом впрыска топлива, используемым производителями автомобилей сегодня, поскольку он значительно повышает топливную экономичность автомобиля в соответствии с новыми экологическими стандартами. Эта система также ограничивает выбросы загрязняющих веществ и увеличивает крутящий момент при низких оборотах в минуту.

Принцип этой системы относительно прост: топливо непосредственно впрыскивается в камеру сгорания прямо перед искрой. Этот тип впрыска помогает сохранить впуск и дроссельную заслонку чище, так как нет никаких топливных отложений вообще.

С обычными системами впрыска топлива, форсунки помещаются перед впускным клапаном или встроены в него во впускной коллектор. Такая система позволяет пропускать воздух, топливо поступает в двигатель при открытии впускного клапана и не поддается контролю индивидуально.

Дизельный двигатель

Дизельные двигатели работают аналогично бензиновым двигателям, но система зажигания гораздо проще. В бензиновом двигателе, воздушно-топливная смесь обычно сжимается в 10 раз. Однако в дизельном двигателе, это не редкость, что воздух в конечном итоге сжимается целых 25 раз. Когда сжатый до такой степени воздух внутри камер сгорания может достигать температура до 500 ° C (1000 ° F), а иногда и больше.

Как только воздух сжат, дизельное топливо распыляется в цилиндр. В этот момент температура внутри камеры сгорания камеры настолько высоки, что топливо воспламеняется мгновенно, без необходимости искра. Остальная часть цикла довольно похожа на любой другой топливный двигатель двигатель.

Роторный двигатель

Роторный двигатель – это двигатель внутреннего сгорания, вращающийся вокруг неподвижного коленчатого вала. Этот тип двигателя был очень распространен в авиации, когда соотношение мощности к массе было главным критерием потребления и надежности.

Роторные двигатели не используют коленчатый вал, так как сам поршень производит вращательное движение.

Основные принципы работы

Общий принцип работы автомобильного двигателя достаточно простой. Цель состоит в том, чтобы использовать энергию, производимую горение окислительно-топливной смеси в закрытой камере. Когда воздух / топливо смесь горит, происходит значительное расширение газов, которые в свою очередь используются чтобы заставить поршни двигаться вверх и вниз и заставить коленчатый вал вращаться. Всё это происходит в цикле цикла и начинается снова и снова.

Автомобильные двигатели – это так называемые ”4-тактные” двигатели.

Такт впуска

Первый ход-это ход впуска. То поршень находится в верхней мертвой точке, а выпускной клапан закрыт. Впускной клапан открывается, пропуская воздух в камеры сгорания. Коленчатый вал, поршень опускается, создавая вакуум, всасывая воздушно-топливную смесь.

Ход сжатия

Ход сжатия начинается, когда поршень достигает нижней мертвой точки и впускной клапан закрывается. Оба клапана теперь плотно закрыты. Поршень под действием коленчатого вала начинает двигаться вверх по цилиндру, сжимая воздушно-топливную смесь в камере сгорания.

Ход сгорания

Когда поршень находится в самой высокой точке, то свеча зажигания произведет искру, Воспламеняющую воздушно-топливную смесь. Сгорание из воздушно-топливной смеси создается огромное, повышается давления внутри цилиндра, заставляющего поршень опускаться вниз и заставляющий коленчатый вал вращаться.

Ход выхлопа

Когда поршень достигнет нижней мертвой точки, выпускные клапаны откроются и позволят сгоревшим парам выталкиваться из цилиндра, когда поршень снова поднимется. Непосредственно перед тем, как поршень достигает верхней мертвой точки, впускной клапан открывается, а выпускной клапан остается открытым несколько мгновений.

Различные внутренние системы и их применение

Система впуска

Чтобы эффективно гореть, топливо должно быть смешано с воздух в правильной пропорции; 14: 1, чтобы быть точным. Это специфическое соотношение воздух / топливо называется стехиометрическим и является наиболее экономичным соотношением топлива для использования в современные двигатели внутреннего сгорания.

Топливо, с другой стороны, распыляется непосредственно во впускное отверстие, ожидая открытия впускных клапанов. Воздушно-топливная смесь контролируется кислородными датчиками, измеряющими количество топлива, оставшегося в выхлопных газах. Если в выхлопных газах будет обнаружено слишком много топлива, модуль управления трансмиссией уменьшит количество топлива, распыляемого во впускном отверстии, и наоборот. Такой процесс гарантирует, что воздушно-топливная смесь всегда будет максимально оптимальной.

Обратите внимание, что на более новых двигателях воздух и топливо являются смешивается непосредственно в камере сгорания, что позволяет получить более точную смесь для каждый из цилиндров. Эти двигатели называются двигателями с непосредственным впрыском топлива и их популярность растет с каждым годом из-за лучшей топливной экономичности они могут добиться своего.

Важно отметить, что в некоторых случаях, некоторые из выхлопных газов могут быть рециркулированы во впускное отверстие, чтобы уменьшить количество NOx, опасного атмосферного загрязнителя, производимого двигателем или в виде способ охлаждения камер сгорания.

Выхлопная система

Выхлопная система начинается в задней части автомобиля. Выпускной коллектор крепится к головке блока цилиндров и получает выхлопные газы от двигателя. Коллектор направляет тепло и дым, направленный в заднюю часть автомобиля, чтобы усилить окисление несгоревшие углеводороды и угарный газ.

Выхлопные газы затем достигают каталитического нейтрализатора, который специально разработан для превращения токсичных выхлопных газов в углекислый газ, который намного менее токсичен, чем угарный газ, и в воду с помощью химической реакции.

Датчик O2 расположен непосредственно перед и сразу после каталитического нейтрализатора, чтобы гарантировать, что соотношение воздух/топливо поддерживается в течение всего времени, чтобы сэкономить на стоимости топлива и минимизировать производимые загрязняющие вещества, насколько это возможно.

Последним компонентом системы является глушитель, работа которого заключается в уменьшении шума, создаваемого взрывами внутри двигателя, путем направления паров в отсеки, называемые резонансными камерами Гельмгольца, прежде чем выпускать их в атмосферу. Вся выхлопная система часто кажется ничем иным, как изогнутым металлическим трубопроводом.

Топливная система

В случае старых двигателей используется карбюратор для взаимодействия с воздушно-топливной смесью перед отправкой ее во впускной коллектор. На последних двигателях, однако, карбюратор заменен инжекторами, которые являются небольшие форсунки высокого давления распыляют топливо во впускной канал или непосредственно в воздухозаборник.

Топливо должно быть под давлением, чтобы распыляться достаточно мелкими каплями, чтобы иметь возможность легко испаряться при входе в камеры сгорания. Это работа топливного насоса, чтобы создать давление в топливной системе.

Система охлаждения

Во время процесса сгорания двигатель создает много тепла, что может быстро привести к перегреву, если нет правильной регулировки. Именно тогда на помощь приходит система охлаждения. Для того чтобы держать жару под контролем, цилиндры окружены проходами заполненными охлаждающей жидкостью. Охлаждающая жидкость проходит вокруг всех основных компонентов двигателя, а затем течет через радиатор. Благодаря вентилятору радиатора дует свежий воздух через ребра радиатора охлаждающая жидкость охлаждается до приемлемого уровня, перед возвращением в двигатель.

Системы наддува

Цель наддува двигателя с использованием турбокомпрессора или нагнетателя предназначена для увеличения выходной мощности и уменьшения расхода топлива. Значительно увеличить выходную мощность двигателя, можно путем воздействия на его скорость вращения, либо на его крутящий момент. Тем не менее, возможное увеличение оборотов быстро ограничивается инерцией движущихся частей и предел сопротивления трению металлических деталей.

Крутящий момент двигателя зависит от угла между шатуном и коленчатым валом, давления газа внутри цилиндра и количества затраченного топлива.

Таким образом, можно увеличить крутящий момент двигателя путем добавления турбонагнетателя или турбонагнетателя для нагнетания большего количества воздуха система, следовательно, позволяет распылять в нее больше топлива, что приводит к более высокой выходной мощности.

Системы с промежуточным охлаждением

Объем воздуха, содержащегося в данном цилиндре, равен пропорционально давлению и, наоборот, также пропорционально его абсолютному температурному значению. Когда воздух находится под давлением, его температура повышается, а плотность увеличивается, модифицируется. Более холодный воздух содержит больше кислорода. Поэтому рекомендуется установить воздушный охладитель для охлаждения воздуха. Двигатель и таким образом восстанавливает оптимальную плотность кислорода для пиковых характеристик. Для достижения этой цели производители автомобилей используют систему интеркулера для охлаждения воздуха прежде чем его впустят в воздухозаборник.

В заключение можно сказать, что в хотя целом здесь раскрыта тема как работает двигатель автомобиля, и несмотря на то что у каждого производителя автомобилей есть свои технологии, фундаментальные принципы работы одинаковы для всех двигателей внутреннего сгорания. Последние автомобили могут быть оснащены усовершенствованным хронометражем системы и электронных модулей, но основы остаются прежними.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *