Как уменьшить яркость светодиода в авто
Регулировка яркости светодиодной подсветки.
Переделал подсветку приборной панели и кнопок, поставил везде светодиоды, в цепи ругулировки яркости не осталось ни одной лампы накаливания. Разумеется штатный 6-омный переменный резюк не будет регулировать яркость такой подсветки, исходя из моей нагрузки нужен минмум 1 КОм. Можно купить электронный диммер от иномарки, где-то видел за несколько сотен отечественный диммер как раз под 6-ти омный резистор… Но мы ведь лёгких путей не ищем 😉 Нашёлся удобный резистор на 2КОм из древнего телевизора, с выключателем, что бы подсветку можно было совсем вырубать. Просто так поменять резистор не вышло — в месте креплеиня глубокая дыра, к тому же ручку хотелось сохранить родную… Хотел просверлить в керамическом основании штатного резюка дырку побольше, что б закрепить новый, не получилось — треснуло. Пришлось делать переходник. Две, а не одна, аллюминиевые пластины из-за подпружиненного пластмассового воротка (штока? не знаю как назвать) который почти идеально одевается на металлический (пришлось немного подточить) вороток нового резистора. Об одну пластину «пружинит» пластиковый вороток родного резюка, а в другую крепится новый резюк, между пластинами шайбы для того что бы гайка крепления нового резистора поместилась. Такая вот конструкция получилась…
Резистор линейный, регулирует плавно, почти до полного погасания, максимум влево — срабатывает выключатель, подсветка гаснет совсем. Марка ТК-А, ТК означает с выключателем, А — линейная характеристика (Б и В — логарифмическая характеристика, будет резко менять яркость). Бывают ещё ТКД — с 2-мя выключателями и СП3-4 — поменьше размером, тоже с выключателем.
Уменьшить яркость светодиодов
Помогите с сайтом или прогой, как в авто уменьшить яркость светодиодов или вообще может регулятор какой поставить… или готовые продают. Светодиодная лента рассчитана, наверное, на 12в. А в машине на рабочем двигателе до 14.4В бывает. Один светодиод сгорел, да и ярко очень светят, хочется потусклее.
Комментарии 47
видел такие, за 50р можно попроще купить. Я сделал проще, взял старый СССР резистор img12.nnm.me/9/6/c/f/1/19…7fe9f8e247584d91da1b2.jpg и подобрал по сопротивлению нужную мне яркость. Резистор не грелся, так и продал машину.
да я б не сказал что и дорого_)). поставил 2 штуки и забыл, да и с таблом, необычно будет_)))
Поставь стабилизатор с регулировкой и все, на основе КРЕНки, резистор не вздумай ставить, только дебилы так делают, резистор греется, напряжение не стабильно, резистор напряжение не уменьшает, а лишь ограничивает силу тока, и соответственно тебе бдет нужен ох.енно мощный резистор, а еще в бортовой сети автомобиль дохрена помех и наводок, а светодиоды этого боятся…
Схем валом, деталей минимум, паяльник в руки и бегом…
С уважением…
Понятно, буду стабилизатор с регулятором мастерить.
А переменный резистор в разрыв если поставить? + или — резать. На сколько ом переменник брать? Или Стабилизатор все же надо. Длина ленточки у меня 5см, стоит в ручке скоростей. Светит красным очень ярко, хочу тусклее 🙂
Самый толковый комент выше, добавить нечего! 🙂
Самый простой способ — еще больше ограничить ток через светодиоды, поставив последовательно еще резистор (от 100 Ом, подберешь по яркости сам).
Более правильный — ограничить напряжение 12ю вольтами, поставив например копеечную детальку-стабилизатор LM7812. Но если лента длинная, то деталька будет греться как утюг.
Самый правильный, который позволит и яркость как хочешь менять — купить какой-то ШИМ-контроллер на том же ebay.
ШИМ от перегорания это спасет. Импульсы — то все равно 14 вольтовые будут. Так что реально лучше переменный резистор поставить.
импульсы будут такие, какой шим-контроллер будет. будет в нем стабилизатор — не будет никаких 14 вольт
Ну тогда уточнять надо, что понимать под ШИМом, простой регулятор яркости или импульсный стабилизатор (тока, напряжения, не важно) на выходе которого обычное напряжение а ШИМ присутствует только внутри схемы. Контроллеры RGB ленты, например, ничего не стабилизируют, а, тупо, нарезают на импульсы то напряжение, которое им подашь.
контроллеры лент, как и любые другие ШИМ-контроллеры не «нарезают на импульсы напряжение которое им подашь» =) есть контроллеры со стабилизированным напряжением +12, есть +5, есть и «что на входе, то и на выходе».
«плюс» никто в шим-контроллерах не трогает, а как вы называете «нарезают» всегда общий. так повторюсь, есть контроллеры со стабилизированным напряжением 12В, которые ШИМом позволяют регулировать яркость в пределах от 0% до 100%.
то, что вы мои слова приписали к импульсному стабилизатору — ваша ошибка. я что написал, то и имел ввиду
Отчасти я не прав. Тогда зайду из далека
1. ШИМ контроллер вообще абстрактное устройство. Вы-же не называете ШИМ контроллером блок питания своего компьютера, например.
2. Здесь на сайте чуть больше чем дохрена «спецов» по «правильному» питанию светодиодов (тот-же krasher). И чаще всего под ШИМ стабилизатором (контроллером или еще чем-то) понимают как раз то, что последовательно с нагрузкой стоит ключ, который, тупо, моргает регулируя яркость светодиодов. Понятно, что ни о какой стабилизации речь не идет. Согласны?
3. И вы тоже рекомендуете человеку (дословно) «купить какой-то ШИМ-контроллер». Из этой фразы можно понять что угодно от ШИМ регулятора яркости до перестраиваемого импульсного источника питания.
4. Я знаю, что плюс не трогают (хотя можно и его), а вы знаете, почему трогают именно минус? (я знаю)
5. Так все таки, чем вам не нравится фраза, что ШИМ регулятор нарезает напряжение? Именно это он и делает.
Гм
Считаю наш спор — он тут без смысла и ни к чему =)
Оба подкованные в этих вопросах и говорим об одном и том же немного разными словами. Прекращаем? =)
Отчасти я не прав. Тогда зайду из далека
1. ШИМ контроллер вообще абстрактное устройство. Вы-же не называете ШИМ контроллером блок питания своего компьютера, например.
2. Здесь на сайте чуть больше чем дохрена «спецов» по «правильному» питанию светодиодов (тот-же krasher). И чаще всего под ШИМ стабилизатором (контроллером или еще чем-то) понимают как раз то, что последовательно с нагрузкой стоит ключ, который, тупо, моргает регулируя яркость светодиодов. Понятно, что ни о какой стабилизации речь не идет. Согласны?
3. И вы тоже рекомендуете человеку (дословно) «купить какой-то ШИМ-контроллер». Из этой фразы можно понять что угодно от ШИМ регулятора яркости до перестраиваемого импульсного источника питания.
4. Я знаю, что плюс не трогают (хотя можно и его), а вы знаете, почему трогают именно минус? (я знаю)
5. Так все таки, чем вам не нравится фраза, что ШИМ регулятор нарезает напряжение? Именно это он и делает.
«4. Я знаю, что плюс не трогают (хотя можно и его), а вы знаете, почему трогают именно минус? (я знаю)»
А для меня можно истолковать? Я чет то ли не поспал, то ли просто не понимаю. Почему?
а если один подох, то и остальные в этой последовательности быстренько помрут
вот и я про то… жду следуещего =)
стабилизатор + переменный резстор тебе в помощь
Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов
Предупреждение: Будет много букв, но вроде все по делу. Статья рассчитана на новичков, умеющих пользоваться паяльником.
Часть 1. Предисловие
Наверное, многие из вас меняли штатные лампы накаливания в плафонах салона, в подсветке номера, в габаритных огнях, в приборной панели и т.д., на светодиодные лампы.
Как правило, при подобных заменах используются уже готовые автомобильные светодиодные лампы, рассчитанные на напряжение 12 вольт.
По сравнению с лампами накаливания, преимущества светодиодных ламп известны, это малое энергопотребление, большой выбор цветов свечения, меньший нагрев, а также существенно больший срок службы.
Однако, для долгой и счастливой жизни светодиода весьма важно, чтобы протекающий через него ток не превышал заданных производителем величин. При превышении максимально допустимого тока, происходит быстрая деградация кристаллов светодиодов, и лампа выходит из строя.
Поэтому, в «правильные» светодиодные лампы уже встроен стабилизатор тока (драйвер). Но такие лампы, как правило, стоят недешево. В связи с этим, в автолюбительской среде гораздо большее распространение получили дешевые светодиодные лампы, не имеющие встроенного стабилизатора. Примеры таких ламп на фото 1:
Из-за отсутствия стабилизатора, такие лампы весьма чувствительны к скачкам напряжения в бортовой сети автомобиля. Кроме того, хитрые узкоглазые производители ламп рассчитывают их параметры, как правило, на максимальное напряжение 12В. Однако, как известно, при работе двигателя напряжение в бортсети составляет 13.5-14.5В. В итоге, светодиодные лампы, не имеющие стабилизатора, часто служат даже меньше, чем обычные лампы накаливания. Особенно это заметно при использовании светодиодных ламп в подсветке номера и в габаритных огнях, когда светодиоды работают в течение длительного времени. Месяц-другой, реже полгода, и лампа начинает мигать, а вскоре и совсем гаснет.
Один из способов продлить жизнь таким лампам — это подключение их через стабилизаторы тока (или напряжения), которые защитят лампы от скачков напряжения в бортовой сети автомобиля и обеспечат требуемый ток. Однако, такой способ имеет ряд существенных недостатков:
Недостаток 1. Для установки стабилизаторов требуется вмешательство в электропроводку автомобиля, на что пойдет не каждый автовладелец, особенно в гарантийный период.
Недостаток 2. По схемотехнике, стабилизаторы делятся на линейные и импульсные. Линейные довольно сильно греются при относительно небольших токах, а импульсные генерируют высокочастотные помехи, которые влияют на качество приема радио.
Недостаток 3. Ламп в автомобиле много, и на каждую (пусть даже группу ламп) поставить стабилизатор проблематично.
Недостаток 4. Возврат к штатным лампам накаливания может потребовать демонтажа ранее установленных стабилизаторов.
Поэтому, в данной статье я предлагаю способ, как существенно продлить срок службы светодиодных ламп, без использования стабилизаторов. Речь пойдет о простой доработке самих светодиодных ламп.
Часть 2. Немного теории
Мне приходилось разбирать множество автомобильных светодиодных ламп. Несмотря на разный внешний вид, тип цоколя и габаритные размеры, практически все недорогие лампы конструктивно похожи, с небольшими вариациями, которые я отмечу далее.
Итак, среднестатистическая автомобильная светодиодная лампа выполнена по типовой схеме, представленной на рис. 2 (приведен пример для 9 светодиодов):
Обозначение элементов на схеме, слева направо:
R0: Резистор-обманка для системы контроля исправности ламп. О нем я сделаю отдельный материал, здесь его пока не рассматриваем. Этот резистор может присутствовать, а может и нет.
I0 — ток через резистор R0. Добавлено: Резисторы-обманки в светодиодных лампах, плюсы и минусы.
VDS1: Диодный мост. Так как для светодиодов важна полярность подключения, диодный мост позволяет подключать лампу как обычную лампу накаливания, не думая о полярности. Самые дешевые лампы не имеют диодного моста, но, в последнее время, он часто присутствует даже в малогабаритных бесцокольных лампах. Диодный мост установлен в лампу чисто для удобства пользователя.
R1-R3: Токоограничивающие резисторы для цепочек из трех светодиодов HL1.1-HL1.3 и т.д. Эти резисторы задают ток, протекающий через каждую из цепочек светодиодов. Чем больше сопротивление резистора, тем меньше ток через светодиоды.
HL1.1-HL1.3: Цепочка из трех светодиодов. В разных по конструкции светодиодных лампах, количество цепочек и количество светодиодов в цепочке может быть различным, но часто используются именно цепочки из трех светодиодов. На данной схеме для примера показана лампа с тремя цепочками по три светодиода в каждой. Есть лампы, состоящие вообще из одного светодиода, но схемотехника у них такая же.
I1-I3: ток через цепочки, например, I1 — ток через цепочку R1-HL1-HL2-HL3 и т.д. Суммарный ток, потребляемый лампой, равен сумме токов Iобщ=I0+I1+I2+I3.
Чтобы повысить надежность работы лампы, правильно ставить на каждую из цепочек отдельный токоограничивающий резистор R1-R3. В этом случае выход из строя светодиодов в одной из цепочек не повлияет на ток через другие цепочки. Однако, в целях экономии, производители дешевых ламп ставят один общий резистор на все цепочки. Такие лампы менее надежны, но выяснить это суждено уже покупателю. Упрощенная схема лампы с одним токоограничивающим резистором приведена на схеме на рис. 3:
От теории перейдем к практике. Я не буду грузить вас сложными расчетами, просто покажу, что и как делать.
Часть 3. Доработка автомобильных светодиодных ламп, не имеющих встроенного стабилизатора тока
Для доработки ламп понадобятся:
1. Паяльные принадлежности — паяльник на 25-40 Вт, флюс, припой.
2. Наличие мультиметра и паяльного фена приветствуется.
3. Набор резисторов требуемой мощности и номиналов. Возможно, для определения типа и номиналов резисторов, придется предварительно разобрать одну лампу для изучения.
Пример 1: Цилиндрические лампы типа C5W или C10W
Отпаиваем металлические контактные колпачки, нагревая их феном или паяльником сбоку, в месте соприкосновения с платой. Под одним из колпачков видим резистор-обманку R0, о нем поговорим в следующей записи (фото 4):
На фото 5 слева направо видим диодный мост VDS1, две цепочки светодиодов HL1-HL2 по три светодиода в каждой, и общий токоограничивающий резистор R1. Это означает, что данная лампа выполнена по упрощенной схеме с одним резистором (см. рис. 3).
Для сравнения, на фото 6 приведена более «правильная» лампа, где используются три токоограничивающих резистора, по одному на каждую цепочку:
На фото 7 показана светодиодная лампа со светодиодной матрицей (технология COB). Такие лампы легко отличить по внешнему виду, на них не видно отдельных светодиодов. Для матрицы COB используется один токоограничивающий резистор R1. В данном конкретном случае, это не удешевление:
Доработка лампы очень простая и сводится к замене токоограничивающих резисторов на резисторы большего номинала. Тем самым мы уменьшаем ток через светодиоды, в результате они меньше греются и дольше служат.
Я провел ряд измерений на различных светодиодных лампах, и для себя сделал следующие выводы:
Вывод 1: Большинство дешевых ламп рассчитаны производителем на максимальное напряжение 12В, не более. При работе в реальных условиях, при напряжении в бортсети порядка 13.5-14.5В, светодиоды работают с перегрузкой и быстро выходят из строя.
Вывод 2: Увеличение номинала токоограничивающего резистора в 2-3 раза не сильно сказывается на яркости свечения лампы, но пропорционально снижает ток через светодиоды, чем существенно продлевает их ресурс.
Вывод 3: Даже при уменьшении тока в 3-5 раз по сравнению с исходным, светодиодные лампы светят ярче, чем аналогичные лампы накаливания.
Отпаяв колпачки и получив доступ плате, выпаиваем заводской резистор и вместо него впаиваем свой, с увеличенным сопротивлением.
На фото 8 заводской резистор сопротивлением 22 Ом заменен на резистор сопротивлением 100 Ом (почти в 5 раз больше):
Подбором номинала резистора можно изготовить лампы для различных применений, например, для освещения салона сделать поярче, в подсветку номера — поменьше яркостью и т.д. Например, на фото 9, для подсветки номера, я поставил резисторы сопротивлением 150 Ом (в 7 раз больше штатного 22 Ом), яркость все равно осталась больше штатных ламп накаливания:
Пример 2. Бесцокольные лампы T10 W5W
Отгибаем контактные усики и разбираем лампу (фото 10):
Видим, что лампа имеет простейшую конструкцию, без диодного моста, питание на светодиоды подается через один токоограничивающий резистор (фото 11):
Еще одна распространенная разновидность лампы W5W, с одним мощным светодиодом. Разбирается аналогично предыдущему примеру (фото 12):
Здесь в конструкции питание подается через два последовательно включенных резистора. Это сделано для того, чтобы резисторы поменьше грелись (фото 13):
Пример 3. Малогабаритные лампы T5 для приборной панели
Как правило, из-за ограниченного размера, в конструкции таких ламп оставлен лишь один светодиод и один токоограничивающий резистор. Разбираются аналогично лампам W5W, путем отгибания усиков (фото 14-15):
Все рассмотренные лампы дорабатываем аналогично, просто заменяем штатные резисторы на свои, с увеличенным в 2-3-5 раз номиналом. Сопротивление резистора подбираем, в зависимости от требуемой яркости свечения.
Часть 4. Некоторые практические советы
Совет 1. В лампах различного размера и конструкции, могут использоваться различные по типу и размеру элементы. Как правило, компоновка деталей лампы довольно плотная, поэтому запаять вместо штатных другие типоразмеры часто бывает затруднительно, из-за ограниченного свободного места. Поэтому, заранее подбирайте подходящие детали, но при этом чтобы мощность нового резистора не была меньше мощности штатного (фото 16):
Совет 2. При работе с паяльным феном, легко повредить горячим воздухом соседние детали, например, светодиоды. Поэтому, перепаивая резисторы, закрывайте другие детали от воздействия горячего воздуха. Я, например, просто прикрывал светодиоды пинцетом (фото 17):
Совет 3. При выпаивании колпачков ламп C5W и C10W, часть припоя может вытечь. При сборке лампы, для надежной пайки колпачков, можно заранее добавить припоя на контактные пятачки платы, тогда при нагреве припой надежно соединит плату и колпачок.
Совет 4. Некоторые лампы со светодиодными матрицами COB, для красоты прикрыты декоративными пластиковыми стеклами. Эти стекла ухудшают теплоотвод, рекомендую их снять, на внешний вид подсветки по факту это никак не влияет, а охлаждаться лампа будет лучше (фото 19):
И в завершение, небольшой прикол. Интересно, откуда на лампе взялась надпись «КОЛЯ», нанесенная промышленным способом? (фото 20):
Данная простая доработка позволяет существенно продлить ресурс автомобильных светодиодных ламп, даже без использования стабилизаторов тока или напряжения.
Всем яркой и надежной подсветки, до связи!
Маленький ликбез любителям пересветки, часть 2
И снова всем привет!
Как и обещал, в этот раз я в двух словах расскажу о правилах включения светодиодов в электрическую цепь, о расчете режима работы светодиодов, выборе токоограничительных резисторов для них, а также о расшифровке цветового кода выводных резисторов.
О питании светодиодов в интернете информации масса, но, к сожалению, многие авторы собственных конструкций часто допускают ошибки, главная из которых допускается при включении в общую цепь нескольких светодиодов одновременно. Для начала разберем включение одного светодиода для работы от напряжения 12В, но перед этим определимся в терминологии.
Как я успел заметить, народ часто путает последовательное и параллельное соединение каких-либо элементов электрической цепи. Рассмотрим, ху из ху.
1. Последовательное соединение
Последовательно — это цепочкой, друг за другом, когда один вывод предыдущей детали соединен только с одним выводом следующей. Наглядный пример — хоровод:)
Главные особенности такого соединения:
— в случае с лампочками или светодиодами, они должны быть одинаковыми, рассчитанными на одно и то же напряжение и ток, иначе одни из них гореть не будут, а другие станут гореть слишком ярко, вплоть до перегорания;
— сумма напряжений, на которые рассчитана каждая лампочка, должна быть равна (в идеале) или примерно равна (на практике) напряжению батареи. Или же, с другой стороны, на каждой лампочке будет напряжение, равное напряжению батареи, деленному на число лампочек. Или же с третьей стороны: сумма напряжений на всех элементах последовательной цепи равна напряжению питания;
— в любом участке цепи будет протекать один и тот же ток;
— при перегорании любой лампочки погаснут все сразу, потому как цепь разорвется.
2. Параллельное соединение — все элементы цепи соединены так, что из двух выводов одни соединяются в один проводник, другие в другой. Наглядный пример — девушка и молодой человек держат друг друга за руки, стоя лицом к лицу:))) Ну, или дети, играющие в «паровозик».
Главные особенности:
— лампочки могут быть разной мощности, на разные токи, но на одинаковое напряжение, равное (в идеале) или примерно равное (на практике) напряжению батареи;
— на любом элементе будет одно и то же напряжение;
— ток, потребляемый от батареи равен сумме токов всех лампочек;
— при перегорании любой лампочки остальные продолжат гореть.
Есть еще и третий вариант соединения — соединение смешанное, когда несколько последовательных цепей соединены параллельно и наоборот.
В таком соединении каждый тип цепи имеет те же главные особенности, что и по отдельности. Кстати, если присмотреться, то цепь, показанная на рисунке 1, тоже является примером смешанного соединения: последовательная цепь лампочек подключена параллельно батарее:)))
Переходим к главному — к светодиодам. Лампочки в подсветке, например, приборной панели VDO 2110, соединены параллельно, каждая лампа рассчитана на напряжение 12В (для лампочки ее рабочее напряжение — определяющий параметр, мощность и число их зависит только от мощности источника питания) и может подключаться к питанию напрямую. Со светодиодом все иначе. При работе светодиода в расчетном, штатном режиме напряжение на нем обычно равно 3…3,3В, но определяющим параметром для него является не напряжение, а ток. Свойства полупроводника таково, что при плавном подъеме напряжения на нем, скажем, с помощью реостата регулировки подсветки, оно начинает расти от нуля до определенной величины (для светодиода это упомянутые 3…3,3В), после чего напряжение остается практически неизменным, дальше растет только ток. И когда он превысит некоторую величину, светодиод перегорает. Если подать на светодиод напряжение прямо с аккумулятора, оно-таки будет составлять 12 вольт, но срок жизни диода будет определяться секундами, если не долями секунд.
Чтобы светодиод стал работать от 12В, необходимо ограничить его ток, чтобы он не превышал максимально допустимого для светодиода значения. Это можно сделать несколькими способами: с помощью токоограничивающего резистора, стабилизатора тока, широтно-импульсной модуляции. Так как все это я пишу в расчете на начинающих, два последних способа мы опустим — тем, кто «в танке», это все уже не нужно — и рассмотрим метод расчета токоограничивающего резистора.
Для того, чтобы уменьшить, ограничить ток в цепи светодиода, нам нужно увеличить сопротивление этой цепи. Вспоминаем закон господина Ома:
где: I — ток, U — напряжение, R — сопротивление
Напряжение у нас всегда одно — 12В. Кто-то возразит — не 12, а 14,4В. Скажем, так: напряжение у нас всегда равно напряжению бортовой сети автомобиля, но чтобы уберечь светодиоды от выхода из строя, все расчеты будем делать для максимального напряжения — 14,4В. Так вот, напряжение у нас всегда одно и то же — 14,4В. Номинальный ток современных светодиодов обычно составляет 10…20 мА. Это (как, впрочем, и рабочее прямое падение напряжения на светодиоде — 3…3,3В величина, усредненная для основной массы белых-синих-красных-зеленых-RGB светодиодов в SMD исполнении) лучше уточнить по даташиту, если известен тип светодиода. Если же тип неизвестен, лучше принять значение 10 мА — светить будет послабее, зато точно не сгорит от перегрузки по току.
Чтобы увеличить сопротивление цепи светодиода, последовательно с ним включается токоограничивающий резистор:
Для определения его номинала узнаем, сколько вольт должно упасть на резисторе. Вспоминаем правило последовательной цепи: сумма напряжений на всех элементах равна напряжению питания. Питание у нас 14,4В. Номинальное напряжение на светодиоде — 3,3В.
Именно такое напряжение должно быть на резисторе — 11,1В. Ток, протекающий в цепи (в том числе, и через светодиод) равен 10…20 мА. Например, для SMD-светодиода типоразмера 3528 номинальный ток равен обычно 20 мА, но для пущей сохранности возьмем немного меньше — 15мА. Выведем сопротивление из формулы закона Ома:
Напряжение на резисторе мы посчитали — 11,1В, ток через светодиод, а следовательно, и через резистор, мы выбрали — 15мА. Сопротивление резистора R = 11,1В / 15мА = 0,74 кОм. Вообще, если делать все по всем правилам, ток должен быть задан в амперах, при этом значение сопротивления получится в омах: 11,1В / 0,015А = 740 Ом. Что, по сути, то же самое:) Ближайший стандартный номинал к рассчитанной величине — 750 Ом. Расчет закончен.
Полезно бывает посчитать мощность резистора для уверенности, что он выдержит. Для этого нужно ток через резистор (на этот раз удобнее уже в амперах:) ) умножить на напряжение на нем: 11,1В * 0,015А = 0,17 Вт (округленно). Теперь расчет совсем закончен — чтобы запитать один светодиод, нам нужен резистор мощностью 0,25 Вт (ближайшее вверх стандартное значение) сопротивлением 750 Ом.
Для удобства сведу все в одну кучу, пусть шпаргалка будет:
Вместо резистора в цепь можно включить стабилизатор тока, простых схем сейчас много в сети. Может быть, когда-нибудь руки дойдут до их описания.
Чаще всего при пересветке всяческих панелей (приборных, печек и т.п.) светодиоды объединяют в группы (обычно по три, реже — по два), при этом экономятся резисторы. И вот тут самое главное правило: светодиоды в группе необходимо соединять только последовательно!
Почему? Все просто. В последовательной цепи через все элементы течет один и тот же ток, который мы можем точно определить и задать с помощью резистора. В параллельной же мы можем задать только общий ток всей цепи, он будет равен сумме токов через светодиоды. Идеального на свете ничего нет, светодиоды тоже имеют разброс параметров: одни потребляют меньший ток, другие больший и может получиться так, что при токе через три «неправильных» светодиода 45 мА (по 15 мА на каждого — вроде справедливо, правда?), но сильном разбросе их параметров на два из диодов может прийтись по 10 мА, а вот третьему достанутся оставшиеся 25, он обидится один раз — и все. А в сумме получатся те же 45 мА.
Так что вот оно, самое железное правило: несколько светодиодов с одним резистором — только последовательно. А вот эти группы между собой соединяем уже параллельно, потому как каждая из них будет рассчитана на 14,4В.
Расчет для группы из двух-трех диодов ничем не отличается от приведенного, только при расчете напряжения на резисторе из напряжения питания нужно вычитать сумму напряжений всех светодиодов в группе (6,6В — для двух, 9,9 — для трех). Сопротивление и мощность вычисляются одинаково.
На этом, собственно, все:)
Ну и напоследок, обещанная таблица цветовой кодировки резисторов и онлайн-сервис для ее расшифровки.
Спасибо за внимание! Всем правильных схем и хорошего настроения:) До новых встреч в эфире!