Какие бывают асинхронные машины

Типы асинхронных двигателей, разновидности, какие бывают двигатели

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

В связи с большими мощностями энергетических систем и большой протяженностью электрических сетей энергоснабжение потребителей всегда осуществляется на переменном токе. Поэтому естественно стремление к максимальному использованию электрических двигателей переменного тока. Это, казалось бы, освобождает от необходимости многократного преобразования энергии.

К сожалению, двигатели переменного тока по своим свойствам, и прежде всего по управляемости, существенно уступают двигателям постоянного тока, поэтому они используются преимущественно в установках, где не требуется регулирование скорости.

Относительно недавно начали активно использоваться регулируемые системы переменного тока с подключением электродвигателей переменного тока через частотные преобразователи.

При подключении двигателя в электрическую сеть в статоре возникает магнитное поле, которое вращается синхронно с частотой питающей сети. За счет явления электромагнитной индукции под действием магнитного поля статора в электрически замкнутых обмотках ротора возникает электрический ток.

Наведенный электрический ток ротора создаст собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате ротор начинает вращаться, и на валу двигателя возникает механический момент, пропорциональный току статора.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Модель трехфазного асинхронного двигателя в разрезе

Характерной особенностью асинхронного двигателя является то, что за счет взаимодействия полей статора и ротора скорость вращения вала двигателя несколько меньше, чем частота питающей сети. Разность между частотой питающей сети и скоростью вращения называют скольжением.

Очень широко применяются в различных отраслях хозяйства и производства асинхронные двигатели в силу простоты их изготовления и высокой надежности. Между тем, можно выделить четыре основных типа асинхронных двигателей:

однофазный асинхронный двигатель с короткозамкнутым ротором;

двухфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с короткозамкнутым ротором;

трехфазный асинхронный двигатель с фазным ротором.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Однофазный асинхронный двигатель содержит на статоре лишь одну рабочую обмотку, на которую в процессе работы двигателя подается переменный ток. Но для пуска двигателя на его статоре есть и дополнительная обмотка, которая кратковременно подключается к сети через конденсатор или индуктивность, либо замыкается накоротко. Это необходимо для создания начального сдвига фаз, чтобы ротор начал вращаться, иначе пульсирующее магнитное поле статора не столкнуло бы ротор с места.

Ротор такого двигателя, как и любого другого асинхронного двигателя с короткозамкнутым ротором, представляет собой цилиндрический сердечник с залитыми алюминием пазами, с одновременно отлитыми вентиляционными лопастями. Такой ротор, типа «беличья клетка» и называется короткозамкнутым ротором. Однофазные двигатели применяются в маломощных приборах, таких как комнатные вентиляторы или небольшие насосы.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Двухфазные асинхронные двигатели наиболее эффективны при работе от однофазной сети переменного тока. Они содержат на статоре две рабочие обмотки, расположенные перпендикулярно, причем одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так получается вращающееся магнитное поле, а без конденсатора ротор бы сам не сдвинулся с места.

Эти двигатели также имеют короткозамкнутый ротор, а их применение гораздо шире, чем у однофазных. Здесь уже и стиральные машины, и различные станки. Двухфазные двигатели для питания от однофазных сетей называют конденсаторными двигателями, так как фазосдвигающий конденсатор является зачастую неотъемлемой их частью.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Трехфазный асинхронный двигатель содержит на статоре три рабочие обмотки, сдвинутые относительно друг друга так, что при включении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве относительно друг друга на 120 градусов. При подключении трехфазного двигателя к трехфазной сети переменного тока, возникает вращающееся магнитное поле, приводящее в движение короткозамкнутый ротор.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Обмотки статора трехфазного двигателя можно соединить по схеме «звезда» или «треугольник», причем для питания двигателя по схеме «звезда» требуется напряжение выше, чем для схемы «треугольник», и на двигателе, поэтому, указываются два напряжения, например: 127/220 или 220/380. Трехфазные двигатели незаменимы для приведения в действие различных станков, лебедок, циркулярных пил, подъемных кранов, и т.д.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Посредством щеток, на кольца также подается трехфазное переменное напряжение, и подключение может быть осуществлено как напрямую, так и через реостаты. Безусловно, двигатели с фазным ротором стоят дороже, но их пусковой момент под нагрузкой значительно выше, чем у типов двигателей с короткозамкнутым ротором. Именно в силу повышенной мощности и большого пускового момента, этот тип двигателей нашел применение в приводах лифтов и подъемных кранов, то есть там, где устройство запускается под нагрузкой, а не вхолостую.

Подробнее про этот тип двигателей читайте здесь: Асинхронные электродвигатели с фазным ротором

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Типы асинхронных двигателей

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Какие бывают типы асинхронных двигателей разберем в статье.

Индукционные или асинхронные машины занимают большую часть производства двигателей в современном мире. Они являются ключевыми преобразователями электрической энергии используются при производстве современных промышленных и бытовых приборов.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Асинхронный двигатель – что это такое

Это электродвигатель переменного тока, который работает за счёт вращения магнитного поля статора; у такого аппарата частота вращения поля не равна частоте вращения ротора. Разницу между этими двумя скоростями часто называют скольжением. Сам мотор состоит из сердечника, обмоток (от 1 до 3), статора и ротора, именно он производит преобразование электроэнергии в механическую.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Сегодня подобные машины очень популярны у производителей, так как они надёжные, прочные, хорошо охлаждаются и могут использоваться как в мощных промышленных конструкциях, так и в небольших бытовых инструментах. При простоте конструкции асинхронных агрегатов они проявляют хорошую устойчивость к скачкам напряжения в сети. Дальнейшее обслуживание индукционных машин очень простое, они достаточно надёжны в эксплуатации. Относительным недостатком асинхронных двигателей можно считать квадратичную реакцию на изменения напряжения сети и короткий пусковой момент.

Какие типы асинхронных двигателей бывают

Различают однофазные, двухфазные и трёхфазные электродвигатели.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Однофазные электродвигатели — самые распространённые в категории. Имеют одну рабочую обмотку, могут функционировать от стандартной сети. Такие агрегаты используют однофазный ток, который запускает вращение вала и ротора электродвигателя. Пазы ротора залиты алюминием, внутри расположен цилиндрический магнитопровод.

Скромные маломощные однофазные машины не могут автоматически начать вращаться, к примеру, от нажатия одной кнопки.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

У однофазного двигателя магнитное поле пульсирует, а движение начинается после получения вращения. Именно для старта на статоре существует ещё одна обмотка. Этот тип машин используются при производстве простых маломощных вентиляторов и насосов. Распространённые виды однофазных машин: двигатели со смещённым полюсом, с пусковым конденсатором, с разъединёнными обмотками.

Двухфазный асинхронный двигатель работает на переменном токе. Две перпендикулярные рабочие обмотки, есть фазосдвигающий конденсатор. В результате запуска электродвигателя выделяется вращающееся магнитное поле, упрощающее пуск, гарантирующее стабильные высокие обороты электродвигателя. Двухфазные аппараты — основы производства ряда станков и некоторой бытовой техники.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Трёхфазный двигатель работает на трёх параллельных рабочих обмотках, смещённых относительно друг друга на 120 градусов. Обороты такого двигателя также поддерживаются в стабильном состоянии за счёт сдвинутого в пространстве магнитного поля. Трёхфазная машина прекрасно справляется с перегрузками. Однако, у подобных агрегатов очень сложная система регулировки скорости вращения вала.

Эти мощные конструкции используются преимущественно при производстве промышленного оборудования. Так, на их основе работают циркулярные пилы, лифты домов, лебёдки, сверлильные станки, молотилки, веялки, краны, барабаны комбайнов и многое другое. Среди трёхфазных видов выделяют также подвиды: с фазным ротором и с короткозамкнутым ротором.

В современном производстве индукционных электродвигателей есть тенденция к изготовлению машин узконаправленного назначения, что позволит наиболее продуктивно использовать электроэнергию.

Итак, мы рассмотрели все типы асинхронных двигателей.

Источник

Асинхронный двигатель: виды и детали конструкции

Главная страница » Асинхронный двигатель: виды и детали конструкции

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Популярность асинхронных электродвигателей очевидна. Между тем асинхронный двигатель купить человеку, неискушённому в электрике, дело далеко не простое. Базовые знания помогут правильно выбрать и купить асинхронный двигатель с короткозамкнутым ротором или же с фазным. Принцип работы указанных двигателей, их устройство — разные, несмотря на присутствие единого термина в названии. Рассмотрим разницу между асинхронным электродвигателем с токосъёмными кольцами и асинхронным двигателем с короткозамкнутым ротором.

Асинхронный двигатель — общий взгляд

Статистику наиболее широко используемых электрических моторов возглавляет именно трехфазный асинхронный двигатель.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныАсинхронные моторы богатым ассортиментом присутствуют на рынке. Но какая из машин выглядит лучшей в техническом плане или применительно к условиям использования?

Практически 80% механических мощностей, используемых всеми отраслями экономики, обеспечиваются трехфазными асинхронными двигателями.

Деловая ставка на этот вид электрических машин обусловлена:

Асинхронным называют двигатель по причине очевидной. Вращательный момент такой конструкции не даёт стабильной синхронности движения.

Мощность трехфазного асинхронного двигателя транспортируется от статора к ротору посредством индуктивной связи.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныКонструктивный расклад: 1 — крышка корпуса передняя; 2 — стержень вала; 3 — арматура; 4 — лопасти захвата воздуха для охлаждения; 5 — сердечник; 6 — рама; 7 — клеммная коробка; 8 — крышка корпуса задняя

Электрическая машина наделена двумя основными деталями конструкции:

Статор — стационарная часть конструкции с обмотками медным проводом, на которые подается трехфазный электрический ток.

Ротор — подвижная деталь конструкции (создаёт момент вращения). Передаёт механическое усилие нагрузке через стальной вал. Ротор трехфазного асинхронного двигателя классифицируется двумя видами:

Соответственно, в зависимости от вида конструкции детали, трехфазный асинхронный двигатель классифицируется как:

Конструкция статора для обоих видов двигателей, при этом, остаётся неизменной.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныНабор основных деталей классической конструкции, которая встречается повсеместно. В зависимости от мощности могут изменяться лишь габаритные размеры компонентов

Другими частями — составляющими конструкции, являются: стальной вал, подшипники, крыльчатка охлаждения, клеммная коробка.

Особенности конструкции статора

Конструкция статора трехфазного асинхронного двигателя содержит трех базовых компонента:

Статор выступает частью корпуса трехфазного асинхронного двигателя. Его основная функция — крепление сердечника статора и проводную намотку.

Внешняя область статора выполняет функцию покрытия, обеспечивает защиту и механическую прочность внутренним частям асинхронного двигателя.

Рама статора изготовлена из литой или свариваемой стали. Каркас трехфазного асинхронного двигателя нуждается в прочности и жесткости. Длина воздушного зазора между рамой и ротором очень мала.

Если не обеспечить прочность и жёсткость конструкции, нарушается концентрическое положение ротора. Такое состояние приведет к разбросу баланса магнитного натяжения.

Основная функция сердечника статора — перенос переменного магнитного потока. С целью уменьшения потерь вихревых токов, сердечник статора ламинируется. Создаются наслоённые тиснения толщиной около 0,4-0,5 мм.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныСтаторный сердечник — по сути, набор из многочисленных металлических пластин, плотно спрессованных друг с другом. Для намотки медного провода оставлены слоты

Все тиснения спрессованы в единое целое, образуя сердечник статора, жёстко скрепленный рамой. Штамповка обычно содержит элементы кремниевой стали, что способствует уменьшению гистерезисных потерь при работе двигателя.

Виды асинхронных моторов

Асинхронный двигатель с короткозамкнутым ротором претендует на лидерство среди всех видов моторов переменного тока. Это оборудование часто используется для нужд промышленности.

Практика применения показала главные свойства этого вида электродвигателей:

Другой вид оборудования – асинхронный двигатель с токосъёмными кольцами (с фазным якорем), отличается куда меньшей потребностью применения в промышленности.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныМотор с токосъёмником: 1 — статорный сердечник; 2 — корпус (рама); 3 — кронштейн; 4 — вал; 5 — подшипник; 6 — якорь; 7 — группа щёток; 8 — устройство коммутации

Не более 5% — 10% моторов с токосъёмными кольцами используются в индустрии.

Объясняется этот момент следующими конструктивными недостатками асинхронных моторов с фазным вращением:

Различия между видами асинхронных моторов

Одним из ярко выраженных различий между фазными и короткозамкнутыми двигателями видится фактор управления.

Электродвигатель, наделённый фазным токосъёмником, допускает включение в цепь внешнюю нагрузку (сопротивление) для управления скоростью двигателя.

В свою очередь схема двигателя с короткозамкнутым ротором не предполагает добавления любой внешней цепи, т.к. пазы ротора прорезаны вплоть до его торцевых граней.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныТаким выглядит один из конструктивных вариантов токосъёмника на три фазы. Здесь следует отметить конструкционную особенность — несколько скошенное расположение слотов

Конструкция ротора фазовращающего типа представлена в виде ламинированного сердечника, наделённого слотами, расположенными параллельно один другому.

Каждый слот содержит по одному стержню и несёт трёхфазную изолированную обмотку. Причём число витков на стержнях равно числу витков обмоток статора.

Три концевых вывода обмотки подключаются, образуя нейтраль «звезды», а начальные выводы соединены с тремя медными кольцами, размещёнными на валу. С кольцами контактируют токосъёмные щётки.

Короткозамкнутый ротор изготовлен несколько иначе. Слоты на сердечнике не располагаются параллельно. Эти элементы ротора скошены под некоторым углом.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныЭлементы КЗР: 1 — алюминиевое кольцо; 2, 7 — вал стальной; 3, 6 — лопасти алюминиевые; 4 — алюминиевые стержни; 5 — ламинированный стальной сердечник

Сердечник сделан многослойным, с прорезями по всей длине окружности, замкнутыми на торцах сердечника медным или алюминиевым кольцом.

Конфигурация скошенных слотов короткозамкнутого ротора имеет свои преимущества:

Особенности для применения на практике

Изучая возможности применения тех или иных конструкций на практике, следует отметить более высокую эффективность моторов с короткозамкнутым ротором.

Относительно эффективности, что показывают асинхронные электромоторы с токосъёмными кольцами, короткозамкнутые выглядят явно лучше. Коэффициент мощности у фазных моторов также существенно ниже.

Однако преимущественной стороной фазных конструкций является возможность регулировать скорость вращения, тогда как короткозамкнутые модификации таких возможностей не дают.

Но регулировка скорости вращения асинхронного двигателя с короткозамкнутым ротором возможна при помощи частотного преобразователя.

Ещё одно преимущество асинхронного электродвигателя с фазным ротором – низкий пусковой ток. Для двигателей с короткозамкнутым ротором этот параметр существенно выше.

Поэтому электродвигатели с фазным ротором, как правило, используются на агрегатном оборудовании, где важен высокий пусковой момент:

Тогда как другой вид моторов (короткозамкнутых) применяется часто в качестве приводов сверлильных, токарных станков и другой техники, где отсутствует потребность высокого пускового момента.

Учебное видео пособие по двигателям разного вида

Источник

Электродвигатели: какие они бывают

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

В прошлых статьях был рассмотрен принцип работы синхронного и асинхронного электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.

В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро?

Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые… Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».

Двигатель постоянного тока (ДПТ)

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи.

Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныПочему ДПТ не делают мощнее? Главная проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5МВт).
В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.

Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения. Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря. Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ. Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.

Универсальный коллекторный двигатель

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ. При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся.

Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря. А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится. Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться. Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но… прекрасно работает как от переменного, так и от постоянного тока.

Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.

Асинхронный электродвигатель

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машиныЕще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана отдельная статья. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле. Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.

Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым). ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев.

Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения. Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле. Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да. Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение. А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.

Синхронный электродвигатель

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Все эти машины выполнялись с контактными кольцами (можно увидеть на фото), о возбуждении от постоянных магнитов при таких мощностях речи, конечно же, не идет. При этом у синхронного двигателя, в отличие от асинхронного, большие проблемы с пуском. Если включить мощную синхронную машину напрямую на трехфазную сеть, то всё будет плохо. Так как машина синхронная, она должна вращаться строго с частотой сети. Но за время 1/50 секунды ротор, конечно же, разогнаться с нуля до частоты сети не успеет, а поэтому он будет просто дергаться туда-сюда, так как момент получится знакопеременный. Это называется «синхронный двигатель не вошел в синхронизм». Поэтому в реальных синхронных машинах применяют асинхронный пуск – делают внутри синхронной машины небольшую асинхронную пусковую обмотку и закорачивают обмотку возбуждения, имитируя «беличью клетку» асинхронника, чтобы разогнать машину до частоты, примерно равной частоте вращения поля, а уже после этого включается возбуждение постоянным током и машина втягивается в синхронизм.
И если у асинхронного двигателя регулировать частоту ротора без изменения частоты поля хоть как-то можно, то у синхронного двигателя нельзя никак. Он или крутится с частой поля, или выпадает из синхронизма и с отвратительными переходными процессами останавливается. Кроме того, у синхронного двигателя без магнитов есть контактные кольца – скользящий контакт, чтобы передавать энергию на обмотку возбуждения в роторе. С точки зрения сложности, это, конечно, не коллектор ДПТ, но всё равно лучше бы было без скользящего контакта. Именно поэтому в промышленности для нерегулируемой нагрузки применяют в основном менее капризные асинхронные привода.

Но все изменилось с появлением силовой полупроводниковой электроники и микроконтроллеров. Они позволили сформировать для синхронной машины любую нужную частоту поля, привязанную через датчик положения к ротору двигателя: организовать вентильный режим работы двигателя (автокоммутацию) или векторное управление. При этом характеристики привода целиком (синхронная машина + инвертор) получились такими, какими они получаются у двигателя постоянного тока: синхронные двигатели заиграли совсем другими красками. Поэтому начиная где-то с 2000 года начался «бум» синхронных двигателей с постоянными магнитами. Сначала они робко вылезали в вентиляторах кулеров как маленькие BLDC двигатели, потом добрались до авиамоделей, потом забрались в стиральные машины как прямой привод, в электротягу (сегвей, Тойота приус и т.п.), всё больше вытесняя классический в таких задачах коллекторный двигатель. Сегодня синхронные двигатели с постоянными магнитами захватывают всё больше применений и идут семимильными шагами. И все это – благодаря электронике. Но чем же лучше синхронный двигатель асинхронного, если сравнивать комплект преобразователь+двигатель? И чем хуже? Этот вопрос будет рассматриваться в конце статьи, а сейчас давайте пройдемся еще по нескольким типам электродвигателей.

Вентильно-индукторный двигатель с самовозбуждением (ВИД СВ, SRM)

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Подавая постоянный ток в фазы в соответствии с текущим положением ротора можно заставить двигатель вращаться. Фаз может быть разное количество. Форма тока реального привода для трех фаз показа на рисунке (токоограничение 600А):
Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины
Однако за простоту двигателя приходится платить. Так как двигатель питается однополярными импульсами тока, напрямую «на сеть» его включать нельзя. Обязательно требуется преобразователь и датчик положения ротора. Причем преобразователь не классический (типа шестиключевой инвертор): для каждой фазы у преобразователя для SRD должны быть полумосты, как на фото в начале этого раздела. Проблема в том, что для удешевления комплектующих и улучшения компоновки преобразователей силовые ключи и диоды часто не изготавливаются отдельно: обычно применяются готовые модули, содержащие одновременно два ключа и два диода – так называемые стойки. И именно их чаще всего и приходится ставить в преобразователь для ВИД СВ, половину силовых ключей просто оставляя незадействованной: получается избыточный преобразователь. Хотя в последние годы некоторые производители IGBT модулей выпустили изделия, предназначенные именно для SRD.

Следующая проблема – это пульсации вращающего момента. В силу зубчатой структуры и импульсного тока момент редко получается стабильным – чаще всего он пульсирует. Это несколько ограничивает применимость двигателей для транспорта – кому хочется иметь пульсирующий момент на колесах? Кроме того, от таких импульсов тянущего усилия не очень хорошо себя чувствуют подшипники двигателя. Проблема несколько решается специальным профилированием формы тока фазы, а также увеличением количества фаз.

Однако даже при этих недостатках двигатели остаются перспективными в качестве регулируемого привода. Благодаря их простоте сам двигатель получается дешевле классического асинхронного двигателя. Кроме того, двигатель легко сделать многофазным и многосекционным, разделив управление одним двигателем на несколько независимых преобразователей, которые работают параллельно. Это позволяет повысить надежность привода – отключение, скажем, одного из четырех преобразователей не приведет к остановке привода в целом – трое соседей будут какое-то время работать с небольшой перегрузкой. Для асинхронного двигателя такой фокус выполнить так просто не получается, так как невозможно сделать несвязанные друг с другом фазы статора, которые бы управлялись отдельным преобразователем полностью независимо от других. Кроме того, ВИД очень хорошо регулируются «вверх» от основной частоты. Железку ротора можно раскручивать без проблем до очень высоких частот.
Мы на фирме ООО «НПФ ВЕКТОР» выполнили несколько проектов на базе этого двигателя. Например, делали небольшой привод для насосов горячего водоснабжения, а также недавно закончили разработку и отладку системы управления для мощных (1,6 МВт) многофазных резервируемых приводов для обогатительных фабрик АК «АЛРОСА». Вот машинка на 1,25 МВт:
Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины
Вся система управления, контроллеры и алгоритмы были сделаны у нас в ООО «НПФ ВЕКТОР», силовые преобразователи спроектировала и изготовила фирма ООО «НПП «ЦИКЛ+». Заказчиком работы и проектировщиком самих двигателей являлась фирма ООО «МИП «Мехатроника» ЮРГТУ (НПИ)».

Вентильно-индукторный двигатель с независимым возбуждением (ВИД НВ)

Это совсем другой тип двигателя, отличающийся по принципу действия от обычного ВИД. Исторически известны и широко используются вентильно-индукторные генераторы такого типа, применяемые на самолетах, кораблях, железнодорожном транспорте, а вот именно двигателями такого типа почему-то занимаются мало.
Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины
На рисунке схематично показана геометрия ротора и магнитный поток обмотки возбуждения, а также изображено взаимодействие магнитных потоков статора и ротора, при этом ротор на рисунке установлен в согласованное положение (момент равен нулю).

Ротор собран из двух пакетов (из двух половинок), между которыми установлена обмотка возбуждения (на рисунке показана как четыре витка медного провода). Несмотря на то, что обмотка висит «посередине» между половинками ротора, крепится она к статору и не вращается. Ротор и статор выполнены из шихтованного железа, постоянные магниты отсутствуют. Обмотка статора распределенная трехфазная – как у обычного асинхронного или синхронного двигателя. Хотя существуют варианты такого типа машин с сосредоточенной обмоткой: зубцами на статоре, как у SRD или BLDC двигателя. Витки обмотки статора охватывают сразу оба пакета ротора.

Упрощенно принцип работы можно описать следующим образом: ротор стремится повернуться в такое положение, при котором направления магнитного потока в статоре (от токов статора) и роторе (от тока возбуждения) совпадут. При этом половина электромагнитного момента образуется в одном пакете, а половина – в другом. Со стороны статора машина подразумевает разнополярное синусоидальное питание (ЭДС синусоидальна), электромагнитный момент активный (полярность зависит от знака тока) и образован за счет взаимодействия поля, созданного током обмотки возбуждения с полем, созданного обмотками статора. По принципу работы эта машина отлична от классических шаговых и SRD двигателей, в которых момент реактивный (когда металлическая болванка притягивается к электромагниту и знак усилия не зависит от знака тока электромагнита).

С точки зрения управления ВИД НВ оказывается эквивалентен синхронной машине с контактными кольцами. То есть, если вы не знаете конструкцию этой машины и используете её как «черный ящик», то она ведет себя практически неотличимо от синхронной машины с обмоткой возбуждения. Можно сделать векторное управление или автокоммутацию, можно ослаблять поток возбуждения для повышения частоты вращения, можно усиливать его для создания большего момента – всё так, как будто это классическая синхронная машина с регулируемым возбуждением. Только ВИД НВ не имеет скользящего контакта. И не имеет магнитов. И ротор в виде дешевой железной болванки. И момент не пульсирует, в отличие от SRD. Вот, например, синусоидальные токи ВИД НВ при работе векторного управления:

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Кроме того, ВИД НВ можно создавать многофазным и многосекционным, аналогично тому, как это делается в ВИД СВ. При этом фазы оказываются несвязанными друг с другом магнитными потоками и могут работать независимо. Т.е. получается как будто бы несколько трехфазных машин в одной, к каждой из которых присоединяется свой независимый инвертор с векторным управлением, а результирующая мощность просто суммируется. Координации между преобразователями при этом не требуется никакой – только общее задание частоты вращения.
Минусы этого двигателя тоже есть: напрямую от сети он крутиться не может, так как, в отличие от классических синхронных машин, ВИД НВ не имеет асинхронной пусковой обмотки на роторе. Кроме того, он сложнее по конструкции, чем обычный ВИД СВ (SRD).

На основе данного двигателя мы также сделали несколько успешных проектов. Например, один из них – это серия приводов насосов и вентиляторов для районных теплостанций г. Москвы мощностью 315-1200кВт (ссылка на проект). Это низковольтные (380В) ВИД НВ с резервированием, где одна машина «разбита» на 2, 4 или 6 независимых трехфазных секций. На каждую секцию ставится свой однотипный преобразователь с векторным бездатчиковым управлением. Таким образом можно легко наращивать мощность на базе однотипной конструкции преобразователя и двигателя. При этом часть преобразователей подключено к одному вводу питания районной теплостанции, а часть к другому. Поэтому если происходит «моргушка питания» по одному из вводов питания, то привод не встает: половина секций кратковременно работают в перегрузке, пока питание не восстановится. Как только оно восстанавливается, на ходу в работу автоматически вводятся отдыхавшие секции. Вообще, наверное, этот проект заслуживал бы отдельной статьи, поэтому пока про него закончу, вставив фото двигателя и преобразователей:

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Заключение: какой же электродвигатель самый лучший?

К сожалению, двумя словами здесь не обойтись. И общими выводами про то, что у каждого двигателя свои достоинства и недостатки – тоже. Потому что не рассмотрены самые главные качества – массогабаритные показатели каждого и типов машин, цена, а также их механические характеристики и перегрузочная способность. Оставим нерегулируемый асинхронный привод крутить свои насосы напрямую от сети, тут ему конкурентов нет. Оставим коллекторные машины крутить дрели и пылесосы, тут с ними в простоте регулирования тоже потягаться сложно.

Давайте рассмотрим регулируемый электропривод, режим работы которого – длительный. Коллекторные машины здесь сразу исключаются из конкуренции по причине ненадежности коллекторного узла. Но остались еще четыре – синхронный, асинхронный, и два типа вентильно-индукторных. Если мы говорим о приводе насоса, вентилятора и чего-то похожего, что используется в промышленности и где масса и габариты особо не важны, то здесь из конкуренции выпадают синхронные машины. Для обмотки возбуждения требуются контактные кольца, что является капризным элементом, а постоянные магниты очень дороги. Конкурирующими вариантами остаются асинхронный привод и вентильно-индукторные двигатели обоих типов.

Как показывает опыт, все три типа машин успешно применяются. Но – асинхронный привод невозможно (или очень сложно) секционировать, т.е. разбить мощную машину на несколько маломощных. Поэтому для обеспечения большой мощности асинхронного преобразователя требуется делать его высоковольтным: ведь мощность – это, если грубо, произведение напряжения на ток. Если для секционируемого привода мы можем взять низковольтный преобразователь и наставить их несколько, каждый на небольшой ток, то для асинхронного привода преобразователь должен быть один. Но не делать же преобразователь на 500В и ток 3 килоампера? Это провода нужны с руку толщиной. Поэтому для увеличения мощности повышают напряжение и снижают ток. А высоковольтный преобразователь – это совсем другой класс задачи. Нельзя просто так взять силовые ключи на 10кВ и сделать из них классический инвертор на 6 ключей, как раньше: и нет таких ключей, а если есть, они очень дороги. Инвертор делают многоуровневым, на низковольтных ключах, соединенных последовательно в сложных комбинациях. Такой инвертор иногда тянет за собой специализированный трансформатор, оптические каналы управления ключами, сложную распределенную систему управления, работающую как одно целое… В общем, сложно всё у мощного асинхронного привода. При этом вентильно-индукторный привод за счет секционирования может «отсрочить» переход на высоковольтный инвертор, позволяя сделать привода до единиц мегаватт от низковольтного питания, выполненные по классической схеме. В этом плане ВИПы становятся интереснее асинхронного привода, да еще и обеспечивают резервирование. С другой стороны, асинхронные привода работают уже сотни лет, двигатели доказали свою надежность. ВИПы же только пробивают себе дорогу. Так что здесь надо взвесить много факторов, чтобы выбрать для конкретной задачи наиболее оптимальный привод.

Но всё становится еще интереснее, когда речь заходит о транспорте или о малогабаритных устройствах. Там уже нельзя беспечно относиться к массе и габаритам электропривода. И вот там уже нужно смотреть на синхронные машины с постоянными магнитами. Если посмотреть только на параметр мощности деленной на массу (или размер), то синхронные машины с постоянными магнитами вне конкуренции. Отдельные экземпляры могут быть в разы меньше и легче, чем любой другой «безмагнитный» привод переменного тока. Но здесь есть одно опасное заблуждение, которое я сейчас постараюсь развеять.

Если синхронная машина в три раза меньше и легче – это не значит, что для электротяги она подходит лучше. Всё дело в отсутствии регулировки потока постоянных магнитов. Поток магнитов определяет ЭДС машины. На определенной частоте вращения ЭДС машины достигает напряжения питания инвертора и дальнейшее повышение частоты вращения становится затруднительно. Тоже самое касается и повышения момента. Если нужно реализовать больший момент, в синхронной машине нужно повышать ток статора – момент возрастет пропорционально. Но более эффективно было бы повысить и поток возбуждения – тогда и магнитное насыщение железа было бы более гармоничным, а потери были бы ниже. Но опять же поток магнитов повышать мы не можем. Более того, в некоторых конструкциях синхронных машин и ток статора нельзя повышать сверх определенной величины – магниты могут размагнититься. Что же получается? Синхронная машина хороша, но только лишь в одной единственной точке – в номинальной. С номинальной частотой вращения и номинальным моментом. Выше и ниже – всё плохо. Если это нарисовать, то получится вот такая характеристика частоты от момента (красным):

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Какие бывают асинхронные машины. Смотреть фото Какие бывают асинхронные машины. Смотреть картинку Какие бывают асинхронные машины. Картинка про Какие бывают асинхронные машины. Фото Какие бывают асинхронные машины

Надо выбрать такую синхронную машину, чтобы требуемый тяговый диапазон регулирования был весь внутри её механической характеристики. Т.е. чтобы машина одновременно могла развить и большой момент, и работать на большой частоте вращения. Как вы видите из рисунка… установленная мощность такой машины будет уже не 60кВт, а 540кВт (можно посчитать по делениям). Т.е. в электромобиль с батареей на 60кВт придется установить синхронную машину и инвертор на 540кВт, просто чтобы «пройти» по требуемому моменту и частоте вращения.

Поэтому синхронная машина хороша там, где большого диапазона регулирования не требуется. Например, в сегвее, где скорость с точки зрения безопасности может быть ограничена на 30км/ч (или сколько там у него?). А еще синхронная машина идеальна для вентиляторов: у вентилятора сравнительно мало изменяется частота вращения, от силы раза в два – больше особо нет смысла, так как воздушный поток ослабевает пропорционально квадрату скорости (примерно). Поэтому для небольших пропеллеров и вентиляторов синхронная машина – это то, что нужно. И как раз она туда, собственно, успешно ставится.

Тяговую кривую, изображенную на рисунке синим цветом, испокон веков реализуют двигатели постоянного тока с регулируемым возбуждением: когда ток обмотки возбуждения изменяют в зависимости от тока статора и частоты вращения. При увеличении частоты вращения уменьшается и ток возбуждения, позволяя машине разгоняться выше и выше. Поэтому ДПТ с независимым (или смешанным) управлением возбуждением классически стоял и до сих пор стоит в большинстве тяговых применений (метро, трамваи и т.п.). Какая же электрическая машина переменного тока может с ним поспорить?

К такой характеристике (постоянства мощности) могут лучше приблизиться двигатели, у которых регулируется возбуждение. Это асинхронный двигатель и оба типа ВИПов. Но у асинхронного двигателя есть две проблемы: во-первых, его естественная механическая характеристика – это не кривая постоянства мощности. Потому что возбуждение асинхронного двигателя осуществляется через статор. А поэтому в зоне ослабления поля при постоянстве напряжения (когда на инверторе оно закончилось) подъем частоты в два раза приводит к падению тока возбуждения в два раза и моментоообразующего тока тоже в два раза. А так как момент на двигателе – это произведение тока на поток, то момент падает в 4 раза, а мощность, соответственно, в два. Вторая проблема – это потери в роторе при перегрузке с большим моментом. В асинхронном двигателе половина потерь выделяется в роторе, половина в статоре. Для уменьшения массогабаритных показателей на транспорте часто применяется жидкостное охлаждение. Но водяная рубашка эффективно охладит лишь статор, за счет явления теплопроводности. От вращающегося ротора тепло отвести значительно сложнее – путь отвода тепла через «теплопроводность» отрезан, ротор не касается статора (подшипники не в счет). Остается воздушное охлаждение путем перемешивая воздуха внутри пространства двигателя или излучение тепла ротором. Поэтому ротор асинхронного двигателя получается своеобразным «термосом» — единожды перегрузив его (сделав динамичный разгон на машине), требуется долгое время ждать остывания ротора. А ведь его температуру еще и не измерить… приходится только предсказывать по модели.

А теперь ВИПы. Что могут они? Какая тяговая характеристика у них? Про ВИД СВ я точно сказать не могу – это по своему принципу работы нелинейный двигатель, и от проекта к проекту его механическая характеристика может сильно меняться. Но в целом он скорее всего лучше асинхронного двигателя в плане приближения к желаемой тяговой характеристике с постоянством мощности. А вот про ВИД НВ я могу сказать подробнее, так как мы на фирме им очень плотно занимаемся. Видите вон ту желаемую тяговую характеристику на рисунке выше, которая нарисована синим цветом, к которой мы хотим стремиться? Это на самом деле не просто желаемая характеристика. Это реальная тяговая характеристика, которую мы по точкам по датчику момента сняли для одного из ВИД НВ. Так как ВИД НВ имеет независимое внешнее возбуждение, то его качества наиболее приближены к ДПТ НВ, который тоже может сформировать такую тяговую характеристику за счет регулирования возбуждения.

Так что же? ВИД НВ – идеальная машина для тяги без единой проблемы? На самом деле нет. Проблем у него тоже куча. Например, его обмотка возбуждения, которая «висит» между пакетами статора. Хоть она и не вращается, от неё тоже сложно отводить тепло – получается ситуация почти как ротором асинхронника, лишь немного получше. Можно, в случае надобности, «кинуть» трубку охлаждения со статора. Вторая проблема – это завышенные массогабаритные показатели. Глядя на рисунок ротора ВИД НВ, можно видеть, что пространство внутри двигателя используется не очень эффективно – «работают» только начало и конец ротора, а середина занята обмоткой возбуждения. В асинхронном двигателе, например, вся длина ротора, всё железо «работает». Сложность сборки – засунуть обмотку возбуждения внутрь пакетов ротора надо еще суметь (ротор делается разборным, соответственно, есть проблемы с балансировкой). Ну и просто массогабаритные характеристики пока получаются не очень-то выдающимися по сравнению с теми же асинхронными двигателями Тесла, если накладывать тяговые характеристики друг на друга.
А также есть еще общая проблема обоих типов ВИД. Их ротор – пароходное колесо. И на высоких частотах вращения (а высокая частота нужна, так высокочастотные машины при той же мощности меньше тихоходных) потери от перемешивания воздуха внутри становятся очень значительными. Если до 5000-7000 об/мин ВИД еще можно сделать, то на 20000 об/мин это получится большой миксер. А вот асинхронный двигатель на такие частоты и гораздо выше сделать вполне можно за счет гладкого статора.

Так что же лучше всего в итоге для электротяги? Какой двигатель самый лучший?
Понятия не имею. Все плохие. Надо изобретать дальше. Но мораль статьи такова – если вы хотите сравнить между собой разные типы регулируемого электропривода, то нужно сравнивать на конкретной задаче с конкретной требуемой механической характеристикой по всем-всем параметрам, а не просто по мощности. Также в этой статье не рассмотрены еще куча нюансов сравнения. Например, такой параметр как длительность работы в каждой из точек механической характеристики. На максимальном моменте обычно ни одна машина не может работать долго – это режим перегрузки, а на максимальной скорости очень плохо себя чувствуют синхронные машины с магнитами – там у них огромные потери в стали. А еще интересный параметр для электротяги – потери при движении выбегом, когда водитель отпустил газ. Если ВИПы и асинхронные двигатели будут крутиться как болванки, то у синхронной машины с постоянными магнитами останутся почти номинальные потери в стали из-за магнитов. И так далее, и так далее…
Поэтому нельзя вот так просто взять и выбрать лучший электропривод.

UPD:
Обобщая замечания в комментариях, необходимо дополнить некоторые важные, как оказалось, вещи, которые я изначально опустил как маловажные.
1. Асинхронные двигатели до эры преобразователей частоты регулировали за счет применения так называемого фазного ротора — когда ротор делался в виде обмотки, а не беличьей клетки, а через контактные кольца (как у синхронной машины) фазы ротора выводились наружу. Включая в цепь ротора резисторы можно было мягко пускать АД и безопасно регулировать частоту вращения, изменяя сопротивление. Проблема в том, что очень много энергии при этом терялось в резисторах — иногда до половины от подводимой к приводу мощности.

2. В статье не упомянуты синхронные реактивные машины и их совмещение с синхронными машинами с постоянными магнитами. Если сделать ротор синхронной машины с магнитами явнополюсным — например таким, как нарисован ротор SRD двигателя на gif анимации, то развиваемый момент может быть не только активным, но и реактивным — как у SRD. Подбирая оптимальное сочетание активного и реактивного момента можно частично исключить проблемы классической синхронной машины с магнитами, значительно расширив диапазон работы с постоянством мощности. Получается некий гибрид реактивной машины и синхронной с магнитами.

3. Шаговые двигатели не рассмотрены, потому что по принципу действия они в первом приближении схожи либо с синхронными машинами с постоянными магнитами, либо с SRD двигателями — зависит от конкретного типа шаговика. Только шаговые двигатели, в отличие от «силовых» приводов, имеют гораздо большее количество пар полюсов (зубцов) для увеличения коэффициента электрической редукции: чтобы одному периоду тока соответствовало меньшее угловое перемещение вала. Управление шаговиками обычно тривиальное — последовательный перебор фаз друг за другом (шаги). Более продвинутые системы дробят шаг, подавая в двигатель «микрошаги» — по сути приближая управление к синусоидальному. Еще более продвинутые используют датчик положения ротора и применяют полноценное векторное управление. Но в таком случае и машину нужно делать более качественную, а называться в сумме это будет уже настоящим сервоприводом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *