Какие есть энергетические машины

Энергетическая машина

* Двигатели — преобразуют любой вид энергии в механическую (электродвигатели, двигатели внутреннего сгорания, паровые машины, гидротурбины);

Генераторы — преобразуют механическую энергию в энергию другого вида (электрогенераторы, поршневые компрессоры, механизмы насосов).Во всех реальных энергетических машинах, кроме преобразований энергии, для которых применяют эти машины, происходят превращения энергии, которые называют потерями энергии. Степень совершенства энергетической машины характеризует её коэффициент полезного действия. Он равен отношению полезно используемой энергии к энергии, подводимой к данной машине.

Энергетические машины широко применяются в промышленности, сельском хозяйстве, транспорте, строительстве, быту.

Связанные понятия

Использование эне́ргии является основой развития человеческого общества и позволяет ему изменять окружающую среду. Общественные формы использования энергии являются решающими для воспроизводства его результатов. В индустриальном и постиндустриальном обществах разработка энергетических ресурсов необходима для сельского хозяйства, транспорта, переработки отходов, развития информационных технологий и телекоммуникаций и других отраслей экономики, развитие которых означает достижение высокого уровня общественного.

В физике механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергий, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу; это энергия движения и сопровождающего его взаимодействия.

Химические лазеры — разновидность газовых лазеров, в которых источником энергии служат химические реакции между компонентами рабочей среды. Химические лазеры непрерывного действия могут достигать высокого уровня мощности и используются в промышленности для резки и создания отверстий.

Источник

Электрические машины

В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.

На практике наибольшее распространение получили индуктивные машины.

Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:

Области применения электрических машин

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины
Рисунок 1 – Области распространения электрических машин

Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].

Основополагающие законы электромеханического преобразования энергии в индуктивных машинах

Закон Ампера

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины

Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила

Направление этой силы определяется по правилу «левой руки».

Закон электромагнитной индукции Фарадея

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины,

Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины,

Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Вращающиеся электрические машины

Виды вращающихся электрических машин

По характеру магнитного поля в основном воздушном зазоре

Источник

Классификация электрических машин

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины

Электрические машины, как и другие устройства, также можно классифицировать. Классифицируют электрические машины по назначению, принципу действия и роду тока, мощности, по частоте вращения.

Классификация по назначению

Электрические машины по своему назначению подразделяют на:

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины

Классификация по роду тока и принципу действия

Как известно, существует два рода электрического тока – переменный и постоянный. Исходя из этого, электрические машины также подразделяют по роду тока на два вида –машины электрические переменного тока и машины электрические постоянного тока.

Электрические машины переменного тока

В свою очередь электрические машины переменного тока делят на:

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины

Электрические машины постоянного тока

В недалеком прошлом были они самыми популярными в регулируемом электроприводе из-за простоты управления ими. Они работают практически во всех сферах промышленности и транспорта. Из-за повышенной стоимости и требовательности в обслуживании активно вытесняются частотно-регулируемыми электроприводами переменного тока.

В связи с большим распространением машин постоянного тока также были распространены и генераторы постоянного тока. Они использовались в качестве источников постоянного напряжения для зарядки аккумуляторных батарей, на транспорте (тепловозы, теплоходы и другие), а также в промышленности (система генератор — двигатель). Ввиду развития полупроводниковой техники генераторы постоянного тока постепенно вытесняются из работы и активно заменяются на генераторы переменного тока работающих в паре с полупроводниковым преобразователем.

Также применяются электродвигатели постоянного тока и в системах автоматического управления АСУ в качестве усилителей электромашинных, тахогенераторов и исполнительных электродвигателей.

Электрические микромашины

Микромашины активно применяются в устройствах автоматических. Соответственно их подразделяют на группы:

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины

Машины первых двух групп довольно часто называют силовыми, а электродвигатели третьей – пятой групп информационными.

Классификация по мощности

Также электрические машины классифицируют еще и по мощности. И по мощности их делят на:

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машины

Классификация по частоте вращения

Условно их разделяют на:

Микромашины же могут изготавливать с частотой вращения вала от нескольких оборотов в минуту до 60 000 оборотов в минуту. Скорость вращения машин средней и большой мощности, как правило, не превышает 3000 об/мин.

Источник

Преобразователи энергии в виде электрических машин

Электрические машины — это преобразователи энергии, устройства, которые преобразуют энергию из одной формы в другую. Они преобразуют механическую работу в электрическую энергию или наоборот.

Существуют также силовые преобразователи, которые преобразуют электрическую энергию одной формы в другую. Они называются статическими преобразователями мощности.

Ниже перечислены некоторые примеры преобразователей мощности:

Преобразователи мощности бывают вращающиеся и статистические.

Вращающиеся преобразователи мощности

Электрические машины, преобразующие электрическую энергию в механическую работу, называются электрическими двигателями.

Электрические машины, преобразующие механическую работу в электрическую энергию, называются электрическими генераторами.

Какие есть энергетические машины. Смотреть фото Какие есть энергетические машины. Смотреть картинку Какие есть энергетические машины. Картинка про Какие есть энергетические машины. Фото Какие есть энергетические машиныМеханическая энергия обычно проявляется в форме вращательного движения. Электрические двигатели и генераторы называются преобразователями вращательной мощности или вращающимися электрическими машинами. Процесс преобразования электрической энергии в механическую работу называется электромеханическим.

Статические преобразователи мощности

В отличие от электрических машин, силовые трансформаторы не содержат движущихся частей. Их работа основана на электромагнитной связи между первичной и вторичной обмотками, окружающими один и тот же магнитопровод.

В дополнение к электрическим машинам и силовым трансформаторам существуют силовые преобразователи, работа которых не основана на электромагнитной связи токовых цепей и магнитопровода.

Преобразователи, содержащие полупроводниковые силовые переключатели, известны как статические силовые преобразователи или устройства силовой электроники. Одним из таких примеров является диодный выпрямитель, содержащий четыре силовых диода, соединенных в мост. Питаемый переменным напряжением, диодный выпрямитель выдает пульсирующее постоянное напряжение. Диодный выпрямитель осуществляет преобразование электрической энергии переменного тока в электрическую энергию постоянного тока.

Преобразование электрической энергии постоянного тока в электрическую энергию переменного тока осуществляется инверторами, статическими преобразователями мощности, содержащими полупроводниковые силовые ключи, такие как силовые транзисторы или силовые тиристоры. Статические преобразователи мощности часто используются в сочетании с электрическими машинами.

Роль электромеханического преобразования энергии

Электромеханическое преобразование играет ключевую роль в производстве и использовании электрической энергии.

Электрические генераторы производят электрическую энергию, в то время как двигатели являются потребителями, преобразующими значительную часть электрической энергии в механические работы, необходимые для производственных процессов, транспортировки, освещения и других промышленных и бытовых применений.

Благодаря электромеханическому преобразованию энергия транспортируется и доставляется удаленным потребителям с помощью электрических проводников. Электрическая передача достаточна надежна, она не сопровождается выбросами газов или других вредных веществ и осуществляется с низкими потерями энергии. Существуют линии передачи постоянного тока.

На электростанциях паровые и водяные турбины производят механическую работу, которая подается на электрические генераторы. Через происходящие процессы в генераторе механическая работа преобразуется в электрическую энергию, которая доступна на клеммах генератора в виде переменного тока и напряжения.

Назначение электрических сетей в передаче электрической энергии в промышленные центры и населенные пункты, где силовые кабели и линии распределительной сети обеспечивают электроснабжение различных потребителей, расположенных в производственных цехах, транспортных единицах, офисах и домашних хозяйствах. В процессе передачи и распределения напряжение несколько раз преобразуется с помощью силовых трансформаторов. Электрические генераторы, электродвигатели и силовые трансформаторы являются жизненно важными компонентами электроэнергетической системы

Основные законы определяющие электромеханическое преобразование энергии

Электромеханическое преобразование энергии может быть достигнуто путем применения различных принципов физики. Работа электрических машин обычно основана на магнитном поле, которое соединяет токоведущие цепи и движущиеся части машины. Проводники и ферромагнитные детали в магнитном поле связи подвергаются воздействию электромагнитных сил. Проводники образуют контуры и цепи, несущие электрические токи. Связь потока в контуре может изменяться из-за изменения электрического тока или из-за движения. Изменение потока вызывает электродвижущую силу в контурах.

Основные законы физики, определяющие электромеханическое преобразование энергии в электрических машинах с магнитным полем связи следующие:

Процесс электромеханического преобразования энергии

Процесс электромеханического преобразования энергии в электрических машинах основан на взаимодействии магнитного поля связи с проводниками, несущими электрические токи. Магнитный поток направляется через магнитопроводы, изготовленные из ферромагнитных материалов. Электрические токи направляются через токопроводящие провода. Магнитопроводы формируются путем укладки железных листов, разделенных тонкими слоями изоляции, в то время как цепи тока выполнены из изолированных медных проводников.

Три наиболее важных типа электрических машин:

Типы электрических машин имеют различную конструкцию и используют различные способы создания магнитных полей и токов.

Вращающиеся электрические машины имеют неподвижную часть, статор, и движущуюся часть, ротор, который может вращаться вокруг оси машины. Магнитная и токовая цепи могут быть установлены как на статор и ротор. В дополнение к магнитным и токовым цепям электрические машины также имеют другие детали, такие как корпус, вал, подшипники и клеммы токовых цепей.

Вращающиеся электрические машины

Механическая работа электрических машин может быть связана с вращением или перемещением.

Большинство электрических машин состоит из вращающихся электромеханических преобразователей, производящих вращательное движение и имеющих цилиндрические роторы.

Линейные двигатели обеспечивающие линейное перемещение подвижной части встречаются довольно редко.

Токовые цепи машины называются обмотками. Они могут быть подключены к внешним источникам электроэнергии или к потребителям электрической энергии. Концы обмотки доступны в качестве электрических клемм. Электрические клеммы обеспечивают электрический доступ к машине. Поскольку электрические машины выполняют электромеханическое преобразование, они имеют как электрический, так и механический доступ. Через электрические клеммы машина может получать электрическую энергию от внешних источников или поставлять электрическую энергию потребителям в схемы, которые являются внешними по отношению к машине. Ротор расположен внутри полого цилиндрического статора. Вдоль оси ротора расположен стальной вал, доступный с торцов станка. Угловая частота вращения ротора называется частотой вращения ротора.

Электрическая машина может выполнять или принимать механическую работу. Вал составляет механическую клемму машины. Он передает вращающий момент или просто крутящий момент внешним источникам или потребителям механической работы. Крутящий момент создается взаимодействием магнитного поля и электрического тока. Поэтому его еще называют электромагнитным моментом. В тех случаях, когда крутящий момент способствует движению и действует в направлении для увеличения скорости, это называется крутящим моментом привода.

Электрический двигатель преобразует электрическую энергию в механическую работу. Последняя подается через вал на машину, работающую в качестве механической нагрузки, также называемую рабочей машиной.

Электрический генератор преобразует механическую работу в электрическую энергию. Он получает механическую работу от водяной или паровой турбины; таким образом, мощность генератора имеет отрицательное значение. Вращающий момент турбины стремится привести ротор в движение, в то время как крутящий момент, создаваемый электрической машиной, противодействует этому движению.

Поскольку электрический генератор преобразует механическую работу в электрическую энергию и подает ее в сеть питания, мощность генератора имеет отрицательное значение. Знак этих переменных связан с опорными направлениями. Изменение опорных направлений для крутящих моментов и токов приведет к положительным крутящим моментам генератора и положительной мощности генератора.

Реверсивные машины

Электрические машины в основном реверсивны.

Реверсивная электрическая машина может работать либо как генератор, преобразующий механическую работу в электрическую энергию, либо как двигатель, преобразующий электрическую энергию в механическую работу. Переход от генератора в режим работы двигателя сопровождается изменением электрических и механических переменных, таких как напряжение, ток, крутящий момент и скорость. Режим работы может быть изменен без изменений в конструкции машины, без изменения в цепях тока и без изменений в соединении вала между электрической и рабочей машиной. Примером реверсивной электрической машины является асинхронный двигатель. При угловых скоростях вращения ротора ниже синхронной скорости асинхронная машина работает в режиме двигателя. Если скорость увеличивается выше синхронной скорости, электромагнитный крутящий момент противодействует движению, в то время как асинхронная машина преобразует механическую работу в электрическую энергию, таким образом, работая в режиме генератора.

Потери при преобразовании энергии

Преобразование энергии сопровождается потерями энергии в цепях тока, магнитных цепях, а также потерями механической энергии в результате различных форм вращательного трения. Из-за потерь значения мощности на электрическом и механическом терминалы не равны.

В режиме двигателя полученная механическая мощность несколько ниже, чем вложенная электрическая мощность из-за потерь на преобразование.

В режиме генератора полученная электрическая мощность несколько ниже, чем вложенная механическая мощность из-за потерь.

Источник

Виды электрических машин

Механическая и электрическая энергия используется человеком почти во всех сферах его деятельности, без нее невозможно нормальное функционирование транспортных средств, механизмов и оборудования, которые используют различные предприятия, бытовых приборов, вычислительных машин и многих других вещей, которыми мы привыкли пользоваться ежедневно.

Электрические машины выполняют функции преобразования механической энергии в электрическую и наоборот, также они могут трансформировать электроэнергию одних параметров в электроэнергию других параметров.

В зависимости от способа работы, назначения и мощности выделяют различные виды электрических машин. Бывают агрегаты этого типа с классическими и специфическими функциями, поскольку часто они создаются специально для отдельных отраслей, чтобы выполнять определенные задачи.

Виды электрических машин по среде создаваемого в них поля

Для преобразования одного вида энергии в другой или изменения ее параметров необходимо создать в воздушном пространстве агрегата электрическое или магнитное поле (оно располагается, как правило, между статором и ротором).

В зависимости от вида этого поля, электрического или магнитного, существуют такие виды электрических машин:

Виды электрических машин по принципу действия

Существуют коллекторные и бесколлекторные агрегаты, которые отличаются друг от друга принципом действия.

К бесколлекторным машинам относятся модели переменного тока. Они могут быть синхронными и асинхронными. В синхронных машинах частоты магнитного поля и ротора равны между собой, а в асинхронных – нет, разница между скоростями их вращения равна частоте скольжения.

Также существуют такие виды электрических машин переменного тока, как двойного питания, где частоты питающего тока для статора и ротора являются разными.

Широко используются трансформаторы, в которых происходит преобразование электрического тока напряжения одного номинала в электрический ток напряжения другого номинала.

Агрегаты постоянного тока имеют в своей конструкции коллектор, к ним можно отнести вентильный двигатель, в нем вместо коллектора вмонтирован полупроводниковый коммутатор, при помощи которого создается вращающийся момент электродвигателя.

Принцип обратимости электрических машин

Агрегаты данной категории имеют различное строение и различные принципы действия, но всем им присущ принцип обратимости, когда одна и та же машина может выступать и в качестве двигателя, и в качестве генератора, и в качестве электромагнитного тормоза.

Такая широкая функциональность установок делает их особенно удобными для использования на различных производственных объектах, поскольку в этой сфере очень важна универсальность установок, их взаимозаменяемость и высокая продуктивность.

Все ныне существующие виды электрических машин довольно востребованы, потому сфера изготовления подобных агрегатов развивается довольно быстро.

Перспективы электромашинного строения

Установки, которые могут обеспечить электричеством и теплом не только небольшие дома, но и целые производственные комплексы, с каждым годом становятся все более востребованными. Кроме того, электромашины могут запускать в действие сложные механизмы, выполняющие на предприятиях различные виды работ.

Ученые постоянно совершенствуют уже имеющиеся модели и придумывают новые, которые имеют большие возможности в сравнении со своими предшественниками.

Внедрение инноваций в электромашиностроение помогает повысить мощность, КПД, прочность и эффективность агрегатов, сократить уровень их шума, снизить массу и уменьшить размеры, а также стоимость установок. Именно по этой причине данная отрасль считается весьма перспективной.

Последние новинки в сфере создания электрических машин на выставке

Узнать, какие виды электрических машин сейчас пользуются особой популярностью среди владельцев различных производственных комплексов и жилых помещений, можно на специализированной выставке «Электро», которая будет проходить в ЦВК «Экспоцентр».

Международное мероприятие соберет под одной крышей лучших производителей электрического оборудования из России и других стран.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *