Коэффициенты лобового сопротивления авто
Топ-7 худших и лучших машин в мире аэродинамики (41 фото)
Главным показателем аэродинамических свойств автомобиля считается коэффициент лобового сопротивления — Cx. Цифры, которые демонстрируют свежие новинки, еще 10 лет назад казались недостижимыми для обычных, массовых машин.
Мы выбрали лучшие и худшие модели с точки зрения аэродинамики. В нашу подборку вошли только серийные легковые автомобили современности. То есть те, которые выпускаются сейчас либо выпускались в последние 15 лет и до сих пор встречаются на дорогах.
Для тех, кто хочет разобраться в вопросах аэродинамики подробнее, ниже мы приводим небольшой «ликбез», объясняющий, как рассчитывают аэродинамические коэффициенты и какие еще показатели, кроме Сх, имеют значение.
Аэродинамика для чайников:
Что такое коэффициент аэродинамического сопротивления Сх? Если выражаться предельно упрощенно, этот показатель демонстрирует, насколько автомобиль легче «прорезает» воздух по сравнению с условным цилиндром, площадь поперечного сечения которого равна максимальной площади сечения автомобиля. Еще это называют площадью фронтальной проекции машины, или коротко — мидель. У условного цилиндра Cx равен единице (в реальности точная цифра будет зависеть от длины цилиндра, но для простоты объяснения мы сейчас от этого абстрагируемся).
Cx показывает лобовое сопротивление — то есть по продольной оси «Х». Соответственно, есть еще Cy и Cz, но в случае с автомобилем они играют гораздо меньшую роль.
Как от формы тела меняется Сх? Все дело в создаваемых завихрениях. Если вместо цилиндра взять плоский щит такого же диаметра, то его сопротивление воздуху будет на 17-20% больше, чем у цилиндра (Cx щита = 1,17-1,2) за счет завихрений позади щита. Там создается зона разреженного воздуха, и она сама по себе как бы «тянет» щит назад. То же самое происходит и с автомобилем.
Одна из лучших форм с точки зрения аэродинамики — капля. У нее Сх будет равен лишь 0,04. То есть капля на 96% более обтекаема, чем цилиндр при равенстве диаметров. Это получается потому, что сзади у капли — длинный сужающийся хвост, а спереди — округлый «обтекатель». Они обеспечивают минимум завихрений. Создатели первых аэродинамичных автомобилей середины прошлого века экспериментировали именно с каплевидными формами кузова (вспомните, какой «хвост» у «Победы»).
У современных легковых автомобилей Сх чаще всего составляет около 0,3. Это означает, что автомобиль на 70% эффективнее с точки зрения аэродинамики, чем цилиндр.
Реальная сила, с которой воздух сопротивляется движению автомобиля, зависит, разумеется, от скорости. Причем с ростом скорости аэродинамическое сопротивление возрастает квадратично. Это влияет в первую очередь на расход топлива — и чем выше скорость, тем больше влияет. Само собой, и максимальная скорость тоже ограничена не только мощностью мотора, но и аэродинамическими особенностями автомобиля.
Создатели автомобилей, кроме обтекаемости машины в продольном направлении, также заботятся об обтекаемости сбоку и о подъемной силе, действующей на автомобиль.
Подъемная сила — это вторая по значимости проблема в аэродинамике автомобилей помимо лобового сопротивления воздуха. Дело в том, что абсолютно любой автомобиль по своим формам похож на профиль крыла самолета: снизу плоский, а сверху — выпуклый. Это означает, что воздух, протекающий над автомобилем, совершает более длинный путь, чем воздух снизу. И скорость потока снизу выше, чем сверху. Из-за этого над машиной появляется зона разреженного воздуха, а под ней, напротив, зона повышенного давления. Чем выше скорость, тем сильнее воздух снизу приподнимает автомобиль.
Разного рода аэродинамические элементы вроде антикрыльев, спойлеров, сплиттеров, диффузоров и накладок на днище призваны создать прижимную силу. В случае с гоночными болидами удается этого достичь в полной мере: чем выше скорость, тем сильнее прижимается машина к земле. Это увеличивает сцепление колес с дорогой и делает автомобиль более стабильным на высоких скоростях.
Тут еще надо упомянуть о таком явлении, как граунд-эффект — за счет особой формы днища и применения аэродинамических «юбок» вдоль бортов конструкторы гоночных машин научились в свое время создавать под машиной зону разреженного воздуха, за счет чего автомобиль «липнет» к дороге. Этим прежде пользовались конструкторы Формулы 1, однако в 80-е годы граунд-эффект в Королевских гонках был запрещен. С тех пор у всех болидов одинаковое ровное днище.
В случае с гражданскими автомобилями о создании прижимной силы говорить не совсем корректно. За счет аэродинамических ухищрений удается добиться снижения подъемной силы, но все равно машины на высоких скоростях немного «взлетают», колеса разгружаются и стабильность падает.
Подъемная сила и сила лобового сопротивления это еще не все. Важное значение имеют момент крена и поворачивающий момент (измеряются при повороте автомобиля под углом к воздушному потоку). Эти показатели отражают склонность машины реагировать на боковые порывы ветра. Чем меньше эти цифры, тем лучше машина держит скоростную прямую и меньше отклоняется от траектории, например, при проезде встречной фуры.
Еще один важный показатель — опрокидывающий момент. Положительные значения этих сил говорят о том, что с ростом скорости передние колеса разгружаются, а задние — нагружаются; отрицательные — наоборот. В идеале — должен быть близок к нулю.
се эти показатели измеряются «вживую» путем продувки автомобилей и макетов в аэродинамической трубе на разных скоростях воздушного потока и измерения реальных сил, действующих на кузов.
Аэродинамическая труба, позволяющая продувать полномасштабные макеты машин и реальные автомобили — это очень большое и сложное сооружение. Скажем, труба на «АвтоВАЗе» имеет длину 67,5 м, а ширину — 29 м. Воздух в ней проходит путь в 150 метров. Поток создается вентилятором, диаметр которого 7,4 м. Максимальная скорость воздушного потока в трубе — 216 км/ч.
Рейтинг худших автомобилей по части аэродинамики
Автомобилей с ужасной аэродинамикой в мире немало, но по понятным причинам многие производители не раскрывают официальные цифры аэродинамических показателей. Более того — у множества моделей они вообще никогда не измерялись ни производителем, ни независимыми исследователями. Мы выбрали семерку наиболее показательных машин, по которым данные известны и достоверны.
7. Lada 4×4 / ВАЗ-21213 «Нива». Коэффициент Сх = 0,536
В том, что классическая «Нива» не умеет ездить быстро, вина не только слабого 81-сильного мотора, но и, конечно, аэродинамики. «Максималка» у этого автомобиля — всего лишь 137 км/ч. Впрочем, для машины родом из 70-х годов прошлого века это не так плохо. Владельцы «Лады 4х4» могут утешать себя тем, что Гелендваген, являющийся практически ровесником тольяттинского внедорожника, по обтекаемости еще хуже.
6. Mercedes-Benz G-класса. Коэффициент Сх = 0,54
Те, кто говорит, что у Гелендвагена аэродинамика кирпича, все-таки сильно сгущают краски. У тела кубической формы Сх равен 1,05, а у Мерседеса G-класса этот показатель вдвое меньше. Гелендваген очень сильно страдает от своей аэродинамики: какой бы мощный мотор ни ставили на эту модель, ее «максималка» оставляет желать лучшего. Даже безумная версия G 65 AMG, развивающая 630 л.с., способна набирать всего лишь 230 км/ч.
5. Вазовская «классика». Коэффициент Сх = 0,56-0,5
В зависимости от модели аэродинамика тольяттинских автомобилей классического семейства немного различается. Наши коллеги из «Авторевю» в 2000 году продули «семерку» и получили результат 0,546. Хуже всего дела у «копейки» — аж 0,56. Такие данные приводит учебник «Автомобили и тракторы. Основы эргономики и дизайна», изданный МАМИ в 2002 году. «Шестерка», по тем же данным, имеет коэффициент 0,54. А лучше всех себя показал универсал 2104 — 0,53.
4. Hummer H2. Коэффициент Сх = 0,57
Многие и не догадываются, что Hummer на трассе с трудом может угнаться за современной малолитражкой, включая Lada Granta. Американский внедорожник не способен ехать быстрее 160 км/ч, в то время как тольяттинской модели покоряется скорость в 183 км/ч. Понятно, что Hummer более чем вдвое тяжелее, но так и мотор у него какой! Выпускавшийся с 2002 по 2009 годы внедорожник имеет под капотом могучий V8 рабочим объемом 6,2 л (393 л.с.), но при Cx = 0,57 он просто не способен нормально «продираться» сквозь толщу воздуха.
3. Jeep Wrangler (поколение TJ). Коэффициент Сх = 0,58
Автомобиль, который произошел от армейского «Виллиса» образца 1941 (!) года, принципиально чужд высоким скоростям. Конечно, современная машина не имеет общих кузовных панелей с Джипом времен Второй мировой войны: Wrangler гораздо крупнее и имеет более обтекаемые формы. Но это не сильно помогает. Хуже всего дела обстоят у двухдверной модификации с открытым верхом (Сх = 0,58). А лучше всего, как можно догадаться, у длиннобазной пятидверки с жесткой крышей — Jeep Wrangler Unlimited. Эта версия имеет Cx, равный 0,495.
2. УАЗ «Хантер» / УАЗ-469. Коэффициент Сх = 0,6
Выпускающийся сейчас «Хантер» мало отличается от УАЗа-469 образца 1972 года, и потому не мог не попасть в наш антирейтинг. Данные по УАЗу-469 приводит вышеупомянутый учебник МАМИ. Доверять этим сведениям вполне можно: первый в списке авторов — профессор Игорь Степанов, много лет занимающийся именно аэродинамикой, а также Анатолий Карунин — в прошлом заведующий кафедрой «Автомобили», а ныне ректор МГТУ «МАМИ».
1. Caterham Seven. Коэффициент Сх = 0,7
Как ни странно, у этого спорткара дела с аэродинамикой обстоят гораздо хуже, чем у угловатых внедорожников. Дело в том, что перед нами фактически разработка 50-х годов — Lotus Seven. Но самое интересное, что ужасная аэродинамика ничуть не мешает этой модели отлично проявлять себя на треке: дело в том, что сухой вес Caterham — лишь 575 кг. Поэтому при мощности в 260 л.с. (с «топовым» мотором) эта модель может набирать 250 км/ч. Ну а разгон до 100 км/ч и вовсе суперкаровский — 3,1 секунды.
Рейтинг лучших автомобилей по части аэродинамики
Борьба за улучшение аэродинамики машин сейчас обострилась как никогда: многие автопроизводители идут буквально «колесо в колесо». Поэтому на некоторых строчках нашего рейтинга расположились не одна и не две, а сразу несколько моделей (и в некоторых случаях это еще не полный список!). По каждой из моделей приведены данные той модификации, которая является лучшей по значению Сх.
Места с седьмого по пятое делят сразу два десятка машин, так что отдельно комментировать каждую из них мы не будем. Ну а начиная с четвертого места — то есть с Cx = 0,23 — остановимся на каждой модели.
Что такое аэродинамика автомобиля и как это работает?
Рассказываем о том, что такое аэродинамика, как встречные потоки воздуха могут вмешаться в управление автомобилем, и как работают спойлеры.
Спойлеры, сплиттеры, воздухозаборники, обвесы… Это лишь малая часть тех «украшений», которые наводнили наши улицы в нулевых годах. Пожалуй, тогда в России настала «золотая» эпоха народного автомобильного тюнинга, и безумные антикрылья вырастали даже там, где им, кажется, совсем не место. Об их истинном предназначении догадывались единицы, а просчитать и установить аэродинамические элементы так, чтобы они выполняли свою прямую функцию, было под силу лишь самым заумным инженерам сопроматчикам.
Сейчас технологии, позволяющие «просчитать» машину в несколько кликов, стали доступнее. Появилось достаточно точное компьютерное моделирование, а аэродинамические трубы больше не ассоциируются только с космической промышленностью. Первопроходцами в области автомобильных аэродинамических изысканий, как всегда, стали спортивные команды, но очень скоро и производители серийных авто присмотрелись к результатам исследований и переняли опыт просветлённых товарищей. Фигурное прорезание воздуха — целое искусство и речь здесь не только о приятных глазу формах, но и о том, что можно ощутить только в движении.
Оказывается, аэродинамика может повлиять и на шум в машине, и на пресловутый разгон 0-100 км/ч, и даже на расход горючего. Как это работает? Давайте разберёмся вместе.
Коэффициент лобового сопротивления
Оказывается, воздух — субстанция капризная и непредсказуемая. В безветренную погоду о его существовании можно даже забыть, но всё меняется, когда вы начинаете двигаться. Невесомый газ будет превращаться практически в кисель по мере того, как вы будете ускоряться. Автомобиль лицом к лицу сталкивается со встречным потоком, и для того, чтобы понять, насколько эффективно машина преодолевает бесконечную воздушную преграду, придумали достаточно эфемерную, но прижившуюся величину — коэффициент лобового сопротивления. Этот показатель относительный и его нужно с чем-то сравнивать, поэтому господа учёные выбрали «эталон». И это не какая-то хитроумная фигура, а самый обычный цилиндр. Он должен быть такого же диаметра, как и самая широкая часть машины и сопротивление которое он встречает при движении принято считать равным 1. И вот когда сопротивление металлической «колбасы» известно, в такие же условия помещают тестируемый автомобиль. И если машина встречает вдвое меньшее сопротивление воздуха, то коэффициент её лобового сопротивления будет равен 0,5. Но сейчас такой показатель считается практически «провальным». Хотя многие представители «кирпичной» аэродинамики любимы и уважаемы на дорогах. Коэффициент лобового сопротивления брутального Gelandewagen, например, составляет целых 0,54. Для сравнения, самый аэродинамичный на сегодняшний день автомобиль может похвастаться значением 0,189. Это футуристичное творение концерна VAG — Volkswagen XL1.
От чего зависят аэродинамические показатели?
На самом деле, факторов может набраться на пару полноценных книг. Но выделить основные категории все таки можно:
Для того, чтобы машина встречала меньшее сопротивление воздуха, важно, чтобы его потоки обтекали автомобиль максимально плавно. При встрече с препятствием воздушный поток сначала сопротивляется, а потом всё же разделяется. Одна его часть минует преграду сверху, другая — снизу, а третья и четвёртая части — сбоку. Представьте, что воздух вокруг машины — это горизонтальные ниточки с пружинами по всей длине. Когда автомобиль въезжает в это полосатое пространство происходит вот что: сначала нужно заставить преграду расступиться. Чем больше площадь участка который первым встретился с эластичным препятствием, тем большее пружин придётся сжать одновременно для того, чтобы продолжить движение. Когда это случилось, нитки начинают постепенно распределяться по кузову и днищу.
Пружины начинают сжиматься дальше, и за счёт этого нити поднимаются по решётке радиатора пока не доберутся до капота. Там обычно есть вполне себе внушительная ступенька, поэтому пружине надо резко сжаться ещё. Затем настаёт очередь ветрового стекла, которое заставляет витки напрячься ещё больше. Так продолжается до тех пор, пока кузов не начнёт сглаживаться и у пружины не появится место для того, чтобы разжаться до нормального состояния. Если линия крыши постепенно заваливается и перетекает в багажник, воображаемая пружина будет разжиматься постепенно, а не менее воображаемая нить будет спокойно очерчивать контур. А вот если сжатая пружина внезапно потеряет опору, то она сначала резко разожмётся, а потом будет колебаться до тех пор, пока не израсходует всю накопленную энергию. Такие хаотичные движения в момент внезапной потери опоры отлично визуализируют турбулентность. В момент её возникновения образуются потоки так называемого возмущённого воздуха, которые завихряются и, тем самым, создают область пониженного давления. Самый простой пример зоны повышенной турбулентности — конец прицепа фуры. Можно физически ощутить, как туда «затягивает», если проехать мимо. Ещё из курса школьной физики известно, что любой предмет стремиться двигаться туда, где давление меньше. Этим и обусловлен такой неприятный эффект. Но если с соседями по потоку всё понятно, то о собственноручно генерируемом «вакууме» многие забывают. Если воздушный поток внезапно оборвался позади вашей машины, то возникшая турбулентность будет буквально засасывать вас обратно, препятствуя движению вперёд.
А ещё стоит учесть, что современные автомобили по своей геометрии отдалённо напоминают форму крыла самолёта.
Днище вашего автомобиля достаточно плоское, и поэтому турбулентных потоков возникает относительно немного, чего не сказать о верхней части кузова. Это значит, что над крышей давление воздуха меньше, чем под колёсами. От этого автомобиль немного приподнимается над дорогой и чем дорожный просвет больше, тем сильнее этот эффект. Самолёты похожим образом опираются на воздух и генерируют подъёмную силу из разницы давлений. На машине вы, конечно, не взлетите, но о таких шутках воздуха лучше не забывать, особенно когда вы едете быстро.
Как аэродинамика влияет на поведение автомобиля
Аэродинамика начинает работать тогда, когда автомобиль сдвигается с места, но на низких скоростях ощутить это практически невозможно. Но чем быстрее вы будете двигаться, тем большее влияние на машину будет оказывать окружающая среда.
Чем быстрее вы едете, тем шумнее становится в салоне. И гудят не только покрышки. Ко всем сопутствующим ежедневной езде звукам добавляются ещё и аэродинамические шумы. Всё гудение и кряхтение, раздающееся вокруг — это звук, с которым воздух «срывается» с кузова автомобиля, а потом «бьётся» в стёкла и двери. Чем быстрее вы будете ехать, тем большее количество воздуха будет с шумом «утекать» со стоек, зеркал и других излишне выступающих частей экстерьера, отсюда и нарастающий шум.
Разгон
Неспроста я успела обозвать воздушную массу киселём. Ведь воздух правда всеми силами сопротивляется передвижению в нём. Работает это примерно так: сила сопротивления воздуха увеличивается пропорционально квадрату скорости, а это значит, что, при прочих равных, если вы ускоритесь с 60 до 70 км/ч, сила сопротивления вырастет примерно на 35%, а если разогнаться до 100 км/ч — на 180%. Получается, что чем быстрее вы едете, тем больше машине требуется мощности на преодоление воздушной преграды. Соответственно, на высоких скоростях может значительно вырасти потребление горючего, а разгон при этом серьёзно «просядет», даже если номинальный запас мощности мотора не исчерпан.
Управляемость
На управляемость сильно влияет подъёмная сила, которая возникает под днищем вашей машины. На маленьких скоростях вес автомобиля больше, чем воздействие воздуха снизу, но на скоростях выше городских вы можете почувствовать, что машина начала по-другому управляться и очень уж нервно реагировать, например, на боковые порывы ветра. Это происходит потому, что кузов чуть приподнялся над дорогой, и часть веса машины приняла на себя своеобразную воздушную подушку. Поэтому пятно контакта колёс с дорогой стало чуть меньше, от этого и неприятная нестабильность в управлении. У всех автомобилей эта «критическая» скорость разная. Кто-то «взлетает» на 100 км/ч, а кому-то и скорость 210 не страшна. Это зависит и от геометрии кузова, веса самой машины и от того, что автомобиль может противопоставить подъёмной силе.
Зачем нужны спойлеры
Если уж мы никуда не можем деться от воздуха и его капризов, то стоит попробовать обратить его способности во благо. Так думали автомобилестроители раньше и продолжают думать сейчас. Главными новаторами и идейными вдохновителями как всегда являются спортивные подразделения автомобильных концернов. Там и с формой днища изощряются, и специальные обвесы изготавливают, и выхлопную системы в технике кружев Ришелье изобретают. Но все эти эффективные инновации вместить в одну серийную гражданскую машину не получится — больно уж дорого и сложно. Приходится выбирать самый простой, надёжный и действенный способ скорректировать поведение машины в воздушном потоке. И если лобовое сопротивление и повышенные шумы можно побороть только полной перестройкой кузова, то со «взлётами» бороться можно иначе. Для этого подойдут передние сплиттеры и задние антикрылья (спойлеры). Сплиттер помогает уменьшить дорожный просвет и буквально отсечь часть воздуха, попадающего под машину на скорости. Это помогает снизить подъёмную силу.
Спойлер же сглаживает поток воздуха, срывающийся с крыши и заднего стекла автомобиля. Но помимо «спрямления» потока, правильно подобранное антикрыло преобразует сопротивление воздуха в прижимную силу. Получается, что воздух встречается с поверхностью антикрыла под таким углом, что часть силы сопротивления направлена в сторону дорожного полотна. Благодаря жёсткому креплению спойлера к кузову, задней части автомобиля не остаётся ничего, кроме как прижаться к земле под воздействием потока воздуха. Это помогает сохранить управляемость, а на заднем приводе ещё и помогает реализовать мощность на ведущих колёсах. Кстати, передние антикрылья тоже есть, но только в мире профессионального автоспорта.
Как видите, аэродинамика — вещь сложная. И подружиться с ней бывает непросто, даже имея почти безграничные ресурсы. Ведь даже крошечная ошибка в расчётах может привести к эффекту, который будет строго противоположен ожидаемому. Да, есть талантливые механики, которые могут преобразить автомобиль, приладив буквально пару планочек, но, по большей части, все незаводские навесные элементы скорее облагораживают внешность машины, а не её повадки. Давайте будем честными: все же мы любим глазами, а все атрибуты настоящего спорткара уж точно заставят проводить их обладателя взглядом.
Аэродинамика. Часть 2. Лобовое сопротивление.
В первой части речь шла об основах аэродинамики и борьбе за ньютоны прижимной силы. Но каждый ньютон силы, прижимающий болид к земле, приходит не один. Он приносит с собой величайшее зло для аэродинамики – лобовое сопротивление.
Ненадолго представим себя специалистами, проводящими аэродинамический расчет. Правда, в настоящее время облик этого специалиста изменился. Если на заре автомобильной аэродинамики это был человек с карандашом в руках, обложенный со всех сторон результатами испытаний, то теперь это инженер, сидящий перед компьютерным монитором, на котором медленно меняются цветные картинки.
За каждой из этих картинок кроется сложнейший процесс вычисления. Он основан на том, что пространство разбивается на множество ячеек, в каждой из которых есть газ. Для каждой ячейки имеется сложная система дифференциальных уравнений, описывающих поведение газа. И каждое мгновение компьютер проводит вычисления для миллионов таких ячеек, определяя сколько газа с какими параметрами пришло и сколько его вышло. Специалисту по аэродинамике остается только наблюдать за происходящим и анализировать результаты. Мы же поступим по старинке и вооружимся нехитрыми исходными данными: знанием основ аэродинамики, горсткой технической информации и калькулятором. Зато объект исследования у нас будет непростой – болид Формулы 1.
Как мы уже знаем, сила лобового сопротивления вычисляется по формуле:
Коэффициент аэродинамического сопротивления для современных болидов Формулы 1 находится в интервале от 0,5 до 1(в зависимости от трассы). По сравнению с гражданскими автомобилями – это очень много. Даже для внедорожников этот показатель находится в районе 0,4. А у лучших с точки зрения аэродинамики представителей автомобильного мира коэффициент лобового сопротивления чуть меньше 0,3. Для формульных болидов это несбыточная мечта. Таким образом они расплачиваются за открытые колеса, радиаторы системы охлаждения, большие антикрылья и возможность прижиматься к дорожному полотну с силой, эквивалентной полутора тоннам.
Представим, что мы на легендарной Монце: позади второй поворот Lesmo, а впереди нас ждет Ascari (это названия поворотов, обрамляющих длинную прямую с небольшим изломом). Но до Ascari еще далеко и мы несемся со скоростью 300 км/ч (примерно 83 м/с) по прямой.
Коэффициент лобового сопротивления нашего болида 0,5. Мы берем минимальное значение, поскольку храм скорости (а именно так в гоночном мире называют трассу в Монце) не прощает большого аэродинамического сопротивления и наказывает всех, кто пренебрег этим негласным правилом, драгоценными секундами, потерянными в безуспешной борьбе с воздухом на длинных прямых королевского парка. Площадь поперечного сечения нашего болида 1,5 м2 (приблизительные данные для BMW Sauber F1.07). Плотность воздуха 1,23 кг/м3. Проведем несложные вычисления:
Именно с такой силой воздух мешает нам двигаться дальше. За спиной 8 цилиндров объемом 2,4 литра, которые выдают 750 л.с. (551 кВт). А как известно, мощность – это произведение силы и скорости. Исходя из этого, мы можем посчитать, сколько же мощности, развиваемой двигателем, уходит на преодоление аэродинамического сопротивления.
Итак:
То есть ПОЧТИ ПОЛОВИНА МОЩНОСТИ двигателя болида уходит в воздух! Поразительно!
Представим, что мы захотели сделать абсурдный поступок и попытались проехать по этому же участку на болиде с аэродинамикой для безумной городской трассы в Монако, то есть с антикрыльями, состоящими из максимально разрешенного регламентом количества планок, наклоненных под максимальным углом атаки. Коэффициент лобового сопротивления стал равен 1, а значит аэродинамическое сопротивление, а вслед за ним и расходуемая на борьбу с воздухом мощность, возрастают в 2 раза. Выходит, что вся мощность двигателя будет потрачена на неравную борьбу с воздушной стеной. Но ведь есть еще и трение покрышек о полотно трассы, нужно преодолевать силы инерции и все тоже трение в коробке передач и дифференциале. А на это у мотора сил уже нет. Поэтому болид с аэродинамикой для гран-при Монако просто не сможет разогнаться в Монце до 300 км/ч!
Так что же это за таинственный враг под названием лобовое сопротивление?
Лобовое сопротивление складывается из двух составляющих: сопротивление трения и сопротивление давления. Рассмотрим их повнимательнее.
Множество выступов и впадин самой разнообразной формы. Что это? Это мы только что посмотрели на вполне гладкую на первый взгляд поверхность при увеличении в несколько тысяч раз. Когда воздух проходит вдоль этой поверхности, некоторые из его частичек цепляются за шероховатости, попадают во впадины и перестают двигаться вместе с остальным потоком. В результате около поверхности образуется так называемый пограничный слой, в котором скорость движения газа меняется в диапазоне от скорости потока до нуля. Следует отметить, что под частицами понимаются не молекулы газа, а небольшие объемы, содержащие множество молекул, но при этом малые по сравнению с размерами исследуемого объекта.
Тормозясь в шероховатостях поверхности, воздух создает силу трения, направленную в направлении движения потока. При этом принципиальное значение имеет то, каков характер пограничного слоя.
Пограничный слой может быть ламинарным и турбулентным. Представьте газовое течение в виде множества траекторий. Если течение ламинарное, то эти траектории не будут пересекаться. При сужении потока они будут плавно сближаться, а при его расширении постепенно отдаляться друг от друга. Это наилучший режим обтекания, поскольку в нем сглажены пульсации и один слой газа почти не мешает движению другого. Если же течение турбулентное, то траектории будут хаотично пересекаться. Это приведет к тому, что в потоке будут возникать вихри и пульсации, а движение одного слоя относительно другого будет затруднено.
Вернемся к пограничному слою. Если он ламинарный, то сопротивление трения минимально, а если турбулентный, то оно значительно возрастает. За счет турбулентного пограничного слоя размеры обтекаемого тела как бы увеличиваются благодаря тому, что вокруг него образуется пелена из вихрей.
Удержать поток в ламинарном состоянии – вот первостепенная задача, которую нужно решить для уменьшения сопротивления трения.
Шероховатость поверхности является одним из основных факторов, турбулизирующих поток. Так что гоночные автомобили блестят не только ради красоты, но и ради эффективной аэродинамики. Так же сильно завихряют поток стыки, швы, резко выступающие элементы. Поэтому обводы гоночных болидов грациозно-плавные, чтобы не дай Бог не побеспокоить столь чувствительный к возмущениям поток. А посмотрите на стыки: идеально подогнанные элементы, маленькие ровные зазоры – все в угоду аэродинамике.
Отрицательный градиент давления вдоль обтекаемого тела. За этой замысловатой формулировкой кроется еще один секрет, с помощью которого пограничный слой можно удержать в ламинарном состоянии. Так что же это за градиент? На самом деле ничего сложно. Было установлено, что если давление при движении по потоку падает, то это способствует удержанию ламинарного течения. А как мы помним, статическое давление падает тогда, когда растет скорость. Представьте, что вы в Испании, палит полуденное солнце, но вам совсем не до послеобеденной сиесты. Вы несетесь, в толпе обезумевших от страха и выброса адреналина людей в красном. А за толпой мчатся так же обезумевшие, но не от страха, а от полуденного зноя и красного цвета быки.
Тем временем видавшая виды улочка старого города становится все уже и уже. А вы бежите все быстрее и быстрее. Рядом с вами уже не многоликая толпа, а всего несколько столь же быстрых как и вы бегунов. Остановиться нельзя, поскольку толпа и уж тем более быки останавливаться не будут и попросту вас сомнут. Вы бы рады завернуть в одну из арок или дверей, которые мелькают где-то сбоку на фасадах старинных домов, но ваша скорость настолько велика, что совершить какой-то резкий маневр вам уже не по силам. И вы продолжаете бежать все быстрее, а рядом все меньше и меньше людей в красном. И если в начале сумасшедшего забега в толпе можно было наблюдать хаотичные движения из стороны в сторону, то теперь в лидирующей группе все строго и четко: люди бегут вперед и только вперед. Похожая картина происходит и в газовом течении. Частицам воздуха не до турбулентности, когда они ускоряются и подталкиваются своими так же ускоряющимися коллегами сзади. Вся энергия идет на движение вперед, а на перемешивание сил почти не остается. Лучше всего уменьшают давление за счет ускорения потока выпуклые формы (например, все то же крыло). Поэтому обводы формульных болидов не рубленные (поток будет завихряться углами), а плавные и выпуклые; поэтому капот, крылья, лобовое стекло, крыша спорткаров из кузовных чемпионатов как бы надуты изнутри и обязательно имеют хоть небольшую кривизну.
Конечно, рано или поздно поток, неаккуратно разрезанный зеркалом заднего вида или антенной, все равно сорвется в вихревое течение, но чем ближе к корме это наступит, тем большая часть автомобиля будет двигаться в окружении ламинарных струек с низким сопротивлением трения.
Настоящим бедствием для набегающего потока являются колеса. Мало того, что их поверхность обладает большой шероховатостью, так они еще и быстро вращаются. В результате сильные завихрения и увеличение сопротивления. Кроме того, спицы на колесных дисках не дают потоку спокойно двигаться. На гоночных автомобилях можно увидеть специальные спойлеры, предназначенные для того, чтобы пустить к колесу как можно меньше воздуха. Иногда применяются щитки, устанавливаемые перед колесом. Пусть лучше поток затормозится щитком и будет потом отведен в сторону, чем он попадет на колесо и превратится в плохоконтролируемый вихревой поток. Негативное влияние спиц может быть снижено благодаря специальным накладкам – колесным втулкам, широко применяемым в Формуле 1. Они закрывают спицы и тем самым снижают их негативное влияние.
Другая составная часть лобового сопротивления — сопротивление давления, — возникает из-за того, что поток под каким-то углом налетает на элементы автомобиля и оставляет им часть своей кинетической энергии. Так дает о себе знать динамическая составляющая давления
Первый и самый очевидный способ снизить сопротивление давления – это уменьшить площадь той поверхности, на которую воздействует поток. То есть поставить горизонтально антикрылья (а лучше вообще их отбросить), широкие и цепкие покрышки заменить на узкие, сделать минимальной ширину болида, убрать зеркала, камеры. Как видите, сплошные жертвы, которые приведут к снижению подъемной силы, снижению сцепления с трассой, снижению устойчивости в поворотах. Истинный путь лежит где-то посредине и овеян туманом. Его никто не видит, но все предполагают, что он где-то рядом. Вот на поиски это пути и уходят сотни часов исследований в аэродинамических трубах и виртуальных экспериментов на мощнейших суперкомпьютерах.
Другой путь не столь кардинален, но еще более трудоемок. Он заключается в создании оптимальной формы. Ведь все не сводится только к площадям поперечных сечений. Одно дело обтекать кирпич, а другое дело – крыло с такой же как у кирпича площадью поперечного сечения. Одно дело направить поток на крыло под углом в 45°, а другое, предварительно аккуратненько повернуть его спойлером так, что на крыло он придет уже под углом в 10°. Поэтому на хэтчбэках часто можно видеть комбинацию из спойлера и антикрыла. В добавок ко всему, за счет спойлера можно добиться того, что во время дождя капли не будут попадать на заднее стекло. Они будут сдуваться потоком, направленным спойлером, еще до соприкосновения со стеклом. И как это может помочь нам в снижении лобового сопротивления, спросите вы. Давайте задумаемся, как часто мы видим дождевые гонки? Так складывается, что не очень и большинство этапов все же проходит посуху. А стеклоочистители (в простонародии дворники) являются прекрасными источниками лобового сопротивления, поскольку поток цепляется за них, тормозится, завихряется. Гоночные автомобили редко стоят на месте и большую часть времени, когда работа дворников все же нужна, они находятся в движении. Поэтому дворник, расположенный на заднем стекле хэтчбэка, можно выбросить, а вместо него поставить спойлер, который будет выполнять функции стеклоочистителя, создавая при этом меньшее сопротивление.
Еще один способ элегантен и прост, как все гениальное. В авиации ходит поговорка: самолету мешают летать крылья. И это чистая правда, поскольку крылья таких размеров нужны лишь для того, чтобы взлететь. В дальнейшем скорость растет, и необходимая подъемная сила может создаваться в два раза меньшими крыльями. Так же и гоночным болидам крылья нужны в быстрых поворотах, где имеется достаточная скорость для создания прижимной силы. На прямых крылья только мешают разгону. Но у материалов есть замечательное свойство – упругость, благодаря которому конструкции могут изменять свою форму, а затем принимать прежний вид. Эту идею взяли на вооружение формульные инженеры. На прямых, где скорость большая, под напором набегающего потока крылья отгибаются, создавая меньше сопротивления. В поворотах, где скорость становится меньше, крылья принимают первоначальное положение и создают большую прижимную силу. Идея красивая, но, как это часто бывает, небезопасная. Думаю, многим, кто увлекается гонками Формула 1, памятны отрывающиеся крылья на болидах Формулы 1. Это во многом было следствием экспериментов с гибкими аэродинамическими элементами. Именно это случилось с болидом Кими Райконена, когда на скорости заднее антикрыло не выдержало напора набегающего воздуха и сломалось, в результате чего болид мигом потерял прижимную силу и выкатился за пределы трассы. В итоге появился еще один пункт технического регламента, запрещающий использовать гибкие антикрылья. Естественно, ничего абсолютно жесткого нет, и крылья гнутся. Но гнутся в строго определенных регламентом рамках.
Мы уже представляли автомобиль в виде крыла. Теперь его ждет очередное перевоплощение. На сей раз он будет поршнем. Поршень — это элемент конструкции, работающий за счет разности давлений. Взять тот же двигатель внутреннего сгорания. С одной стороны есть давление в камере сгорания (десятки атмосфер), с другой – атмосферное давление. Поршень перемещается под действием большего давления в сторону меньшего.
Смотрим на автомобиль. С одной стороны набегающий поток давит на его носовую часть. С другой — за автомобилем образуется зона разряжения, поскольку поток не успевает занять пространство непосредственно за ним. Давление в зоне разряжения гораздо меньше, чем то, что действует на переднюю часть. В результате получается своеобразный поршень, препятствующий движению вперед. Это так называемое донное сопротивление.
Вспомним каплю – идеальную аэродинамическую форму, созданную самой природой. Разряжение за каплей, благодаря ее сужающейся форме, минимально. Поэтому создателям автомобилей нужно стремиться к каплевидной форме задней части. Но здесь вступают в действие конструктивно-компоновочные соображения, согласно которым кроме аэродинамики есть еще много важных аспектов. Поэтому на практике сначала получают габариты задней части, а уже потом работают над обводами кузова, пытаясь угодить столь капризной аэродинамике. Ну а средств не так уж много: поработать над формой крыльев, багажника или капота, установить диффузор, не очень усердствовать со спойлерами и антикрыльями.
Охлаждение агрегатов автомобиля – отдельная большая тема. У нее много граней, и мы с вами сейчас коснемся лишь одной из них – той, что связана с аэродинамикой. Итак, воздух в системах охлаждения нужен для того, чтобы забрать тепло. Но мало просто пустить воздух к радиатору или охлаждаемому агрегату. Его нужно еще и отвести от объекта охлаждения.
Во-первых, это необходимо для повышения эффективности системы охлаждения. Чем больше нагретого воздуха в единицу времени мы отведем, тем больше ненагретого газа придет ему на смену. Во-вторых, все тот же поршень. Если воздух будет плохо отводиться от радиатора, то перед ним создастся избыточное давление, которое приведет к росту лобового сопротивления. Поэтому на гоночных автомобилях часто можно видеть жабры для отвода горячих газов.
Но просто отвести нагретый газ мало. Как известно, температура – это мера энергии. Когда мы ощущаем теплый воздух, то это означает, что его молекулы имеют большую кинетическую энергию, сильнее и чаще бьются о нас и передают нам эту энергию. Мы же просто чувствуем тепло. Так вот, отведенный поток более активен, чем тот, что не участвовал в охлаждении. Внутри более нагретого потока и на его границе велика вероятность образования турбулентных течений. Поэтому необходимо особо тщательно прорабатывать пути отвода горячих газов. Взгляните на болиды Формулы 1: их боковые понтоны изрезаны жабрами самой причудливой формы.
Так же немаловажным является вопрос отведения выхлопных газов от двигателя. С одной стороны лучше расположить выхлопные трубы сзади, где поток уже перестает обтекать автомобиль и следить за ламинарностью пограничного слоя нет нужды. Но с другой стороны таким жестом можно повлиять на работу диффузора. Поэтому на спортивных автомобилях часто можно увидеть выхлопные трубы в других местах. На тех же формульных болидах они расположены обычно перед задними колесами, там где уже течет нагретый радиаторами воздушный поток.
Подводя итог, можно сказать, что аэродинамика — это весы. На одной чаше которых прижимная сила, на другой – лобовое сопротивление. Но смотрим мы на эти чаши через кривое зеркало. Взглянули под одним углом, и перевешивает прижимная сила, поскольку в общем случае надо стремиться к большей стабильности и меньшему сопротивлению. Посмотрели под другим, и вниз тянет лобовое сопротивление, так как на быстрых трассах его снижение важнее, чем создание прижимной силы. Вроде бы лишь немного сдвинули свой взгляд в сторону, а победа вновь на стороне прижимной силы, ибо мы находимся на медленном автодроме. И так можно продолжать бесконечно.
Настолько многолика сама аэродинамика и настолько широко ее применение в автоспорте, автомобилестроении и тюнинге.
Следующая статья, как и обещал, будет посвящена заре аэродинамики и ее первым, неуверенным шагам в автоспорте. Не пропустите самое интересное ))
Подписывайтесь! Будет интересно 🙂
Отдельное большое человеческое спасибо за репост! 🙂