Конденсаторный аккумулятор для автомобиля
На что рассчитывать водителю, когда «умер» аккумулятор
В чем отличие литий-полимерных и конденсаторных пусковых устройств? — ответ читайте в опубликованном ниже сравнительном тест-обзоре от экспертов портала «Автовзгляд»:
Зима — время, когда автомобильные пусковые устройства особенно востребованы, ведь в холодное время года мороз практически ежедневно экзаменует миллионы автомобилей на предмет надежной работы. Даже если опасаешься утром не завестись, каждый вечер снимать с машины аккумулятор, таскать его домой, а утром монтировать обратно — не вариант.
Временным выходом — до замены «уставшей» АКБ или проверки машины у хорошего автоэлектрика — может стать использование автомобильного пускового устройства. Хотя автор этих строк держит в машине такого типа штуковину из иных соображений: на случай, если кому-то из соседей по автостоянке или просто на дороге потребуется экстренное «прикуривание». Автомобильный «пускач» для этих целей приспособлен гораздо лучше, нежели машина целиком. Надо сказать, что такие аппараты бывают двух типов: литий-полимерные и конденсаторные.
И у тех, и у других есть свои особенности, которые нагляднее всего видны на примере гаджетов от одного бренда — таким образом исключаются различные маркетинговые «помехи» и можно сфокусироваться на «чистом железе». Для этой цели мы выбрали линейку автомобильных пусковых устройств бренда «Berkut». Во-первых, потому что марка эта достаточно широко распространена на нашем рынке, а во-вторых потому, что в ее «репертуаре» есть по несколько автомобильных «пускачей» обоих типов.
Начнем с литий-полимерных пуско-зарядных аппаратов — Berkut JSL-12000 и Berkut JSL-18000. В основе конструкции каждого из них, само собой, литий-полимерный аккумулятор. Только у одного устройства его емкость 12 А*ч, а у другого — 18 А*ч. Соответственно, первый выдает максимальный пусковой ток на уровне 400 Ампер, а второй — 600 Ампер. Чтобы воспользоваться устройством такого типа, его нужно предварительно зарядить от бытовой электросети напряжением 220 Вольт либо от бортовой розетки 12V. Модель JSL-12000 набирает полный заряд за четыре часа, а более мощный JSL-18000 — за семь.
После этого каждый из них обеспечивает по 10—15 попыток пуска мотора. Разница между ними в том, что Berkut JSL-12000 рекомендуется применять для запуска бензиновых двигателей рабочим объемом не более 3,5 л и 2 л в случае с дизельным силовым агрегатом, а Berkut JSL-18000 справится и со «взрослыми» моторами: с бензиновым до 7 литров рабочего объема, либо с 4,5-литровым дизельным.
У конденсаторных пусковых устройств своя специфика. В первую очередь — конструктивная. Тут аккумуляторы отсутствуют в принципе. Вместо них применены сверхъемкие конденсаторы — так называемые ионисторы.
В линейке Berkut три конденсаторных аппарата. Они различаются по своим энергетическим параметрам: Berkut JSC-300 выдает пусковой ток в 300 Ампер, Berkut JSC-450 — в 450 Ампер, а Berkut JSC-800 — в 800 Ампер. Соответственно, первый предназначен для запуска двигателей объемом вплоть до 3-литрового бензинового и 2,5-литрового дизельного, второй — до 4,5-литрового бензинового и 3-литрового дизельного и третий способен завести 7-литровый бензиновый или 5-литровый дизельный мотор.
Несомненным преимуществом конденсаторных устройств перед литий-ионными являются условия их хранения без всякого контроля и подзарядки неограниченное время при любых погодных условиях и температурах от −40 до +65 С.
Данные пускачи можно без всякой опаски хранить в багажнике автомобиля. Литий-полимерные же устройства нельзя хранить в разряженном состоянии, и в заморозки в автомобиле держать их не имеет смысла, поскольку при хранении в низких температурах батарея теряет свои пусковые свойства и свой пиковый ток такое устройство не выдаст.
Еще одним важным отличием является высокая скорость зарядки конденсаторных пускачей. Им даже не нужна 220-вольтовая электросеть. Так, самое мощное конденсаторное пусковое устройство заряжается на 100% от обычного автомобильного аккумулятора за каких-то 3—5 минут! От автомобильного прикуривателя в салоне — не более, чем за 15—20 минут, от 5-вольтового мини-USB (в компьютере, к примеру) — за 2—3 часа.
Прелесть конденсаторных «беркутов» серии JSC в том, что их можно на 100% зарядить даже от «полумертвого» аккумулятора твоей же машины, который уже не в состоянии сам ее завести. Пусть в штатной бортовой батарее останется хотя бы 5% энергии — этого хватит на полную зарядку конденсаторного Berkut. Но, если по каким-то причинам двигатель не завелся, конденсаторный девайс потребует новой полной зарядки. Да, она продлится, скорее всего, не долго. Но время займет. Литий-полимерный конкурент в подобной ситуации обеспечит еще, как минимум, десяток попыток пуска.
Ну и нельзя не сравнить вес литий-полимерных и конденсаторных пуско-зарядных устройств. У литий-полимерных он минимален. JSL 12000, например, весит всего 450 грамм, а JSL 18000 — чуть более 600.
Благодаря своей компактности литий-полимерные устройства вполне можно использовать в качестве внешнего аккумулятора для подзарядки мобильного гаджета или ноутбука. Тем более, что производитель предусмотрел такую возможность, оснастив оба девайса соответствующими USB-разъемами. «Конденсаторы» же весят в 2—3 раза больше: Berkut JSC-300 – 1,23 кг, Berkut JSC-450 – 1,38 кг и Berkut JSC-800 – 1,84 кг.
Одним словом, выбор современного автомобильного пуско-зарядного устройства всегда превращается в нелегкую дилемму. Что предпочесть: меньший вес, компактность и большее число попыток пуска или большие габариты, но отсутствие необходимости заряжать устройство заранее, а также беззаботное хранение в багажнике? Решить, что тут однозначно лучше, а что хуже в принципе невозможно. Каждому автовладельцу приходится при этом ориентироваться исключительно на свои предпочтения и условия возможной эксплуатации.
Видео-обзор литий-полимерных и конденсаторных пусковых устройств BERKUT:
Наша страница на DRIVE2:
Комментарии 61
На что рассчитывать водителю, когда «умер» аккумулятор? На трезвый разум и светлую голову нужно расчитывать, но уж точно не на маркетинг и современные гаджеты!
Любой аккумулятор нужно содержать в чистоте, клеммы при этом должны быть как у кота яйца, а также не забывать проверять нужный заряд и рабочее напряжением бортовой сети, исправным должно быть и электрооборудование! Тогда он будет работать ещё долго.
А вот что касается заряда и разряда АКБ, то тут начинается котовасия и многие автолюбители не понимают разницу между Са-Са и обычным сурьмянистым АКБ. Са-Са аккумуляторы это сыромятина, которая требует до сих пор большой доработки. Инженеры придумали, а до конца не додумали, тут услышали звон маркетологи, созвонились, предложили, по рукам-по рукам и попёр бизнес под идейным соображением. Сегодня от идеи до внедрения проходят пару дней! Большое значение при выборе АКБ имеет правильная (проффесиональная) подача информации от продавца, который порою сам не понимает настоящей разницы между этими АКБ, порою даже несоображают что они несут! По этому люди попадают на большие бабки не понимая что берут и заряжают всю эту новую лабуду теми устройствами, что есть в гараже и ни какое другое устройство тут уже не поможет, а бренд тем более. Если АКБ не правильно заряжен, что особенно это касается именно Са-Са, то его хватить до первого небольшого простоя автомобиля, а зимой это даже не вариант и ни чего ты с ним не сделаешь если накосячил с зарядкой. Такой АКБ только на помойку!
Са-Са АКБ — идея хорошая, но эта хрень сегодня, полная!
Поэтому не путайте мух с котлетами и доносите информацию до людей правильно и правильную!
Суперконденсаторы: что это, зачем и где применяется
Энергетика — крайне интересная сфера, которая развивается бурными темпами много лет подряд. На Хабре публикуются самые разные статьи об альтернативных источниках энергии, аккумуляторных батареях от Маска, электромобилях и т.п.
Но есть одна тема, которая затрагивается не так уж и часто. Речь идет о суперконденсаторах. Им как раз посвящена эта статья, в ней раскрывается суть суперконденсатора, сферы применения, плюс описываются кейсы из разных отраслей — промышленности, транспорта и т.п., где используются эти системы.
Суперконденсатор, что ты такое?
Все мы знаем, что такое аккумулятор — это источник постоянной мощности, ограниченный током разряда. Батареи бывают большие и маленькие, применяются они крайне широко — от транспорта до игрушек.
Но эта статья посвящена суперконденсаторам, так что пришло время рассказать о них. Так вот, любой суперконденсатор — это источник не постоянной, а импульсной мощности. Она ограничена лишь эквивалентным внутренним сопротивлением, которое позволяет элементу работать, фактически, на токах короткого замыкания.
Но при этом, в отличие от аккумулятора, это источник кратковременных, хотя и мощных импульсов энергии. Соответственно, и используются суперконденсаторы там, где нужна большая мощность на небольшой срок.
Суперконденсаторы называют еще ионисторами. Эти элементы состоят обычно из двух погруженных в электролит электродов и сепаратора. Последний нужен для того, чтобы не допустить перемещение заряда между двумя электродами с противоположной полярностью.
У суперконденсаторов два положительных свойства — высокая мощность и низкое внутренне сопротивление, чем они и отличаются от конденсаторов и аккумуляторных батарей. Чаще всего материал электрода суперконденсаторов — активный углерод, у которого две важные особенности, включая очень большую площадь поверхности и небольшое расстояние между разделенными зарядами.
Еще один положительный момент — длительный срок хранения и продолжительный срок службы суперконденсаторов. Все это — благодаря особенностям накопления энергии. Так, суперконденсаторы работают за счет разделения зарядов. Этот процесс легко обратим, так что отдавать энергию суперконденсаторы могут действительно быстро.
Теперь немного об определении характеристик суперконденсаторов. В отличие от аккумуляторов, где основная характеристика — это емкость, измеряемая в Ампер-часах, у суперконденсаторов это Фарад. Вот формула, которая позволяет определить энергию суперконденсатора:
Энергия (Дж) = 1/2*Емкость (Ф) * Напряжение в квадрате (В)
Есть несколько видов суперконденсаторов:
Во втором — система включает два твердых электрода и базируется на двух механизмах сохранения энергии. Это фарадеевские процессы и электростатическое взаимодействие.
Третий вариант — переходный между конденсаторами и аккумуляторами. Электроды здесь выполнены из разных материалов, а накопление заряда осуществляется благодаря разным механизмам.
Где могут использоваться суперконденсаторы?
Вполне логичный ответ — в отраслях, где нужно отдавать энергию быстро и в большом объеме. В частности, это может быть:
Примеры
Их можно привести большое количество, но разумно будет ограничиться тремя наиболее показательными.
Частотно-регулируемый электропривод. Здесь суперконденсаторы нужны при просадках напряжения и кратковременном, не более 10 секунд, блэкауте. Такие приводы используются на участках непрерывного технологического цикла на производственных объектах. Кроме того, суперконденсаторы стоит использовать на предприятии и в системах, которые снабжают объект газом, водой, теплом и энергией, т.п. на компрессорных станциях, в котельных, насосных станциях и т.п.
Источник бесперебойного питания. В этом случае суперконденсаторы дают возможность компенсировать провалы напряжения, которые приводят к проблемам с непрерывностью технологических процессов. Здесь речь идет о крупных объектах, включая промышленность и разного рода инфраструктуру — например, транспортную.
Суперконденсаторы, в частности, используются на заводе Skoda в Чехии, а именно — роботизированном цехе по покраске корпусов автомобилей. Если процесс окрашивания по какой-либо причине остановится, потом корпус придется возвращать в начало цикла.
Регулирование выходной мощности турбин ветрогенераторов. Большая проблема альтернативной энергетики — сложность поддержания выходной мощности турбин на одном уровне. Чем выше скорость ветра и сам он мощнее, тем больше вырабатывается энергии. Чем ниже, соответственно — тем энергии меньше. В итоге выходная мощность турбин может меняться, и очень значительно.
В этом случае суперконденсатор может помочь, причем сразу несколькими способами:
Производят ли суперконденсаторы в России?
Да, на Хабре еще несколько лет назад публиковалась новость о том, что в НИТУ «МИСис» разработала технологию, которая открыла возможность отечественной компании запустить производство суперконденсаторов.
Так, в 2017 году компания ТЭЭМП запустила в г. Химки производство высокоэффективных суперконденсаторов и модулей на их основе. При этом все это — чисто российские разработки. ТЭЭМП, к слову, производит плоские единичные элементы в ламинированном корпусе, который может использоваться в химических источниках тока с органическими электролитами: суперконденсаторах, литий-ионных аккумуляторах, металло-воздушных источниках тока.
При этом, ТЭЭМП производит ячейки собственной запатентованной конструкции – призматическая ячейка с токосъемом по всей ее поверхности. И сделано это не для того, чтобы показать свою уникальность, а чисто с практической точки зрения – распределенный по всей поверхности токосъем обеспечивает равномерность тепловых полей, тем самым замедляя процесс деградации и продлевая срок службы суперконденсатора.
В сухом остатке
В качестве вывода можно подвести итоги, указав преимущества и недостатки суперконденсаторов. Некоторые из них упоминались выше, но сейчас стоит перечислить все это отдельно.
Суперконденсаторы на запуск — Часть 1. Теория, муки выбора
Так уж завелось, что данная Q7 является, скорее, долгоиграющим проектом, чем рядовым транспортным средством. Чем и стараюсь радовать подписчиков. И с каждым внедрением чего-либо становится все сложнее осуществить новую задумку, никогда ранее не бывалую.
Так и сейчас, казалось бы, система о 2 АКБ фактически идеальна (за 4 года ни разу не подвела), но хотелось чего-то нового, еще более особенного. Хотя и второй АКБ на Q7 появился впервые именно у этого авто. Знаю многих довольных последователей!
Выходит, система запуска уже не уникальна, надо двигаться дальше.
Нет проблем — будем стартовать с суперконденсаторов!
И тут уже не скажем заветную фразу «Как тебе такое, Элон Маск?», так как крупнейший производитель ионисторов Maxwell нынче выкуплен как раз Теслой, дабы не плодить новые технологии без спроса.
Собственно, как доводится опытному инженеру, параметры основного компонента подбирались с потолка, и критерий был основной — емкость не ниже 3000F (да-да, тех самых Фарад, к которым нам в школе на уроках физики приравнивали емкость Земли). Технологии не стоят на месте и двуслойный электролитический конденсатор уже легко даст фору многим источникам тока. Кратковременного тока. А именно он-то нам и нужен.
На этом от теории отклонюсь, и приведу 3 основных варианта, между которыми были долгие муки выбора:
3. Китай-кондёр GCAP3400 — 3400Ф, 2.85В, 0.28мОм, от 20 евро на Алиэкспресс. На 2.7В дешевле.
Как уже можно понять, одного элемента недостаточно (2.85В макс) для пробуждения стартера. И выбор таки пал на Али (точная копия Максвелла, а то и сами их банки перемаркированные).
Вот только на момент подбора нашелся вариант 6-ячеечной батареи за 110 евро на ebay, соответственно, думать дольше не стал — через пару недель заказ был на руках.
К слову, фирма Skeleton выпускает свои конденсаторы в городе моего проживания (он же Таллин), в считанных километрах. На запрос сэмплов по розничной цене даже не стали отвечать. Ребята, если читаете, да вы жмоты. Да поглотит вас Маск.
Да, размеры приличные до неприличия — почти 40см в длину.
Для масштаба — фломастер и 26650 аккумулятор, имеющий фактически ту же энерговооруженность (3,7в*5Ач=18,5Втч у батарейки против 6*3,84Втч=23,04Втч у кондеров). Однако, батарейка никогда не сможет выдать то, на что рассчитан суперконденсатор.
Пошло вскрытие — даже балансиры оказались включены в цену (обязательная вещь!):
Суперконденсаторы вместо аккумулятора в автомобиле
Понадобится
Этого хватит для первого опытного образца.
Первое испытание с запуском двигателя
Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.
Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.
После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.
Схема
Вот схема второго прототипа батареи.
Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.
Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.
На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.
А заряжается аккумуляторная батарея через контроллер зарядки.
Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.
Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.
Полностью рабочий экземпляр батареи на суперконденсаторах
Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.
Ионисторы вместо стартерного свинцово-кислотного аккумулятора
Идея запуска ДВС от ионисторов (на западе их называют суперконденсаторы) не нова, в сети есть несколько публикаций и видео роликов. В тех, которые я смотрел, либо ничего не вышло, либо получилось слишком дорого. Получилось заводить двигатель только на ионисторах емкостью 3 тысячи фарад. На 500 и 700 фарадах двигатель ни у кого не завелся.
Теория
Набравшись опыта коллег по цеху, решил сначала провести эксперименты на виртуальной модели гибридного аккумулятора. Для этого взял замечательную программу Yenka. Нашел в сети, то что у вазовского стартера рабочий ток примерно 150-200 ампер. Ионисторов в Yenka не нашел. Использовал обычные конденсаторы только с большой емкостью. В результате виртуальных экспериментов ионисторы в 500 фарад крутили стартер аж 3.5 секунды, пока напряжение не упало ниже 8 В.
Падение напряжения при виртуальном «прокручивании» стартера от сборки из 6 ионисторов по 500Ф
Эксперимент в программе показывает, что можно завестись от сборки из шести 500 фарадников. Но на практике у коллег не получилось. Возможные причины:
я напутал в схеме в программе;
на самом деле ток стартера выше;
на практике были поддельные ионисторы.
Изначально, мне сильно не понравились клеммы на 500 фарадных ионисторах, они меньше чем на UPS-ных аккумуляторах. А если посмотреть на клеммы авто аккумуляторов и толщину провода к стартеру, то можно предположить, что из-за малого сечения клемм ионисторов было сильное падение напряжения на них и тока не достаточно чтобы провернуть стартер.
У конденсаторов, в отличии от аккумуляторов, под нагрузкой нет стабильного напряжения. То есть, если подключаем стартер к заряженной до 14 вольт батареи ионисторов, то через 2 секунды работы напряжение упадет до 11 вольт, еще через 2 секунды до 7 вольт. Чтобы напряжение снова поднялось, нужно заряжать конденсаторы. Поэтому время работы стартера сильно зависит от начального напряжения. Так как максимальное напряжение одного ионистора 2.7 вольт, а генератор в машине может выдавать до 14.5 вольт в сборе нужны минимум 6 ионисторов, тогда максимальное напряжение составит 16.2 вольт. Было бы разумно использовать весь потенциал ионисторов и заряжать их до 16 вольт. Не нашел достоверной информации о том не сгорит ли стартер от 16 вольт. Но в характеристиках других электроприборов в машине русским по белому сказано: «до 15 вольт». Решил рискнуть стартером и собрать гибридный аккумулятор, где будет 6 банок ионисторов на 16.2 В, подключенные только к стартеру, балансировочная плата, обычный аккумулятор на 12 вольт для питания всего остального и заряжаемый от генератора. И повышающий преобразователь чтобы повысить напряжение от 12 до 16 вольт.
Закупка
Нашел в китайском магазине ионисторы на 350 фарад. Забил емкость в Yenk-у, оказалось, что их хватит на 2.5 секунды работы стартера. Заказал их, а также балансировочную плату.
Аккумулятор взял обычный от UPS на 7 Ач.
Сборка
В качестве корпуса будет коробка от старого свинцового аккумулятора. Крышку срезал так, чтобы клеммы остались на месте. Иначе клеммы будут на крышке и соединять их нужно будет соплями гибкими проводами. А я хочу все силовые соединения сделать жесткие, резьбовые. Полностью перегородки вырезать не стал, ширина одной “банки” как раз подошла под диаметр одного ионистора, оставил куски перегородок как изоляторы и для крепления преобразователя.
Между собой соединил алюминиевой полосой сечением 30х1 мм, сделанной из обрезка тавра, купленного в магазине крепежа.
зажим плашечный ПА-2-2 ВК
Внутри аккумуляторные клеммы проводились к пластинам свинцовым стержнем 12 мм. Для соединения с ним взял “зажим плашечный ПА-2-2 ВК” и отпилил от него кусок, нужного размера. К болту зажима прикрутил алюминиевую полосу, идущую к ионистору. Балансировочную плату соединил с перемычками тонкими проводами с клеммами на винты. Точно так же как и преобразователь и аккумулятор.
Общий “плюс” на 12В вывел через стенку корпуса болтом 6 мм. Точно так же вывел минус включения преобразователя.
Эксперименты
Сейчас, зимой, сдох аккумулятор от UPS, либо он просто не предназначен для работы на морозе, либо мне его изначально дали еле живой. Его не хватает даже на втягивающее стартера, но ионисторы заряжает. Заказал 4 LiFePO4 аккумуляторы и балансир.