Машины постоянного тока виды обмоток якоря
Обмотки якоря
Элементом обмотки якоря является секция, которая своими концами присоединена к двум пластинам коллектора. Секции могут быть одновитковыми и многовитковыми. Пазовые стороны секций расположены в пазах сердечника якоря. Расстояние между пазовыми сторонами секции приблизитеьно равно полюсному делению.
где Da — диаметр сердечника якоря.
Обычно обмотки якоря выполняют двухслойными. В зависимости от порядка присоединения секций к пластинам коллектора обмотки разделяют на волновые и петлевые, простые, сложные и комбинированные.
Простая волновая обмотка
В простой волновой обмотке концы каждой секции присоединены к пластинам коллектора, находящимся на расстоянии, называемом шагом обмотки по коллектору,
где К — число коллекторных пластин в коллекторе.
На рис. 13.5 показана схема простой волновой обмотки якоря. Секции обмотки образуют две параллельные ветви (2а = 2). Число параллельных ветвей в обмотке и число секций в каждой ветви определяют ток Iа и ЭДС Еа обмотки якоря:
где S — количество секций в обмотке якоря; ес — ЭДС одной секции; Iс — допустимое значение тока в секции.
Сложная волновая обмотка
Применяется в машинах постоянного тока, рассчитанных на большие токи. Сложная волновая обмотка состоит из двух простых волновых обмоток, соединяемых щетками параллельно (рис. 13.6). Такая обмотка содержит четыре параллельные ветви, следовательно, ток в ней может быть увеличен в два раза, а ЭДС при этом остается прежней.
Простая петлевая обмотка
В машинах постоянного тока низкого напряжения (значительного тока) необходима обмотка якоря с большим числом параллельных ветвей. Таким свойством обладают петлевые обмотки. В простой петлевой обмотке якоря (рис. 13.7) каждая секция присоединена к двум рядом лежащим коллекторным пластинам, а число параллельных ветвей равно числу полюсов, т.е. 2а = 2р.
Сложная петлевая обмотка
Для того чтобы распределение токов в параллельных ветвях обмотки якоря было одинаковым, необходимо, чтобы электрическое сопротивление этих ветвей не отличалось друг от друга и чтобы ЭДС, наводимые в секциях, составляющих каждую параллельную ветвь, были одинаковыми. При несоблюдении этих условий между параллельными ветвями появляются уравнительные токи, нарушающие работу щеточно-коллекторного контакта.
Исключение составляет простая волновая обмотка , секции которой равномерно распределены под всеми полюсами машины, поэтому магнитная не симметрия машины не вызывает появления в этой обмотке уравнительных токов. Что же касается простой петлевой и всех видов сложных обмоток якоря, то в них всегда имеются причины к появлению уравнительных токов. Это приводит к необходимости применения в указанных обмотках так называемых уравнительных соединений, по которым замыкаются уравнительные токи, разгружая щеточно-коллекторный контакт от перегрузки. Уравнительные соединения усложняют изготовление обмотки якоря и ведут к дополнительному расходу обмоточной меди.
Комбинированная обмотка
Обмотки якоря машины постоянного тока
Обмотки бывают якорные, коллекторные, полюсные.
Обмоткой якоря называется замкнутая система проводников, определенным образом уложенных на сердечнике и присоединенная к якорю.
Обмотки якоря бывают:
Основные показатели, характеризующие обмотки якоря.
Одновитковая секция правоходовой простой петлевой обмотки
у1 – первый частичный шаг – это расстояние, выраженное в элементарных пазах между начальной и конечной стороной данной секции.
у2 – второй частичный шаг – это расстояние, выраженное в элементарных пазах между конечной стороной данной секции и начальной стороной последующей секции.
у – результирующий шаг – это расстояние, выраженное в элементарных пазах между начальной стороной данной и начальной стороной последующей секции.
ук – шаг по коллектору – это расстояние, выраженное в элементарных пазах в коллекторных пластинах между серединами коллекторных пластин, к которым присоединены концы данной секции.
Только для простых петлевых обмоток справедливо равенство у=ук=1, у1=у+у2.
Двухветковая секция простой витвевой обмотки:
Левоходовая простая петлевая обмотка:
Сложная петлевая обмотка:
Волновая простая обмотка якоря:
Комбинированная:
t — полюсное деление – это расстояние по поверхности якоря, приходящаяся на один полюс.
, где Да – диаметр якоря; 2р – число полюсов.
, где Z – число пазов сердечника.
S=K=Z, где S – число секций, K – число коллекторных пластин.
Обмотки якоря выполняются двухслойными.
, где e необходимо для того чтобы у1 было целым числом, e£1.
Верхний слой данной секции и нижний слой другой секции образуют элементарный паз.
Схемы обмоток якоря бывают двух видов:
На развернутой схеме при выполнении к каждой коллекторной пластины присоединяются конец данной и начало последующей секции.
Простые петлевые обмотки якоря
При выполнении простых петлевых обмоток якоря секция своими концами присоединяется к серединам рядом лежащих коллекторных пластин. Простая петлевая обмотка якоря не имеет ни начала, ни конца, она замкнутая на себя, то есть при наводке обмотки за один обход по якорю улаживаются абсолютно все секции таким образом, что конец последней секции присоединяется к началу первой секции.
а)
б)
д) , где a=(0,65-0,8) – коэффициент полюсного перекрытия.
Щетки устанавливаются на коллекторных пластинах, к которым присоединены концы секции с наименьшей ЭДС. Необходимо установить щетки на геометрическую нейтраль. Щетки устанавливаются на оси полюсов, что равноценно геометрической нейтрали.
Условная электрическая схема обмотки.
Строится на основе развернутой схемы, причем на ней показываются все серии.
Коллекторные пластины изображаются не все, а только те, к которым присоединены щетки. Причем щетки одной полярности изображаются на одной вертикали. В каждой параллельной сети должно быть одинаковое количество секций.
По закону параллельного соединения величина ЭДС будет определяться одной параллельной ветви или же количеством секций, включенные последовательно к сети. А ток определяется по сумме токов каждой ветви.
Для простой петлевой обмотки 2а=2р.
Обмотка якоря определяет основные параметры электрической цепи: величину параметра тока и ЭДС.
Машины постоянного тока. Обмотки якорей машин постоянного тока.
Машина постоянного тока — электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Электрическая машина постоянного тока обратима. Для работы машины постоянного тока необходимо наличие в ней двух обмоток: обмотки возбуждения и обмотки якоря. Первая служит для создания в машине постоянного тока магнитного поля, т. е. для возбуждения, а посредством второй происходит преобразование энергии. Исключение составляют магнитоэлектрические машины постоянного тока, в которых имеется лишь одна (якорная) обмотка, так как магнитное поле (возбуждение) в этих машинах создается постоянными магнитами.
Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору.
Элементом обмотки якоря является секция, которая содержит один или несколько витков и присоединяется к двум коллекторным пластинам. Секция состоит из активных сторон, заложенных в пазы сердечника якоря, и лобовых частей, соединяющих эти стороны. При вращении якоря в каждой из активных сторон индуктируется э. д. с. В лобовых же частях секции э. д. с. не индуктируется.
Часть поверхности якоря, приходящаяся на один полюс, называется полюсным делением и выражается следующей формулой:
где t — полюсное деление;
2p – число главных полюсов в машине.
Полюсное деление
Расположение активных сторон на сердечнике якоря
Чтобы э. д. с., индуктируемые в активных сторонах секций, складывались, т. е. действовали согласно, секцию следует расположить в пазах сердечника якоря так, чтобы ширина секции была равна или незначительно отличалась от полюсного деления.
Элементарные пазы: а) один элементарный паз; б) два элементарных паза; в) три элементарных паза
Изображение секции на развернутой схеме
Секции укладываются в пазах сердечника якоря в два слоя. При этом если одна из активных сторон секции находится в нижней части одного паза, то ее другая сторона находится в верхней части другого паза. Верхняя сторона одной секции и нижняя сторона другой, уложенные в одном пазу, образуют элементарный паз (Z3 ). В реальном пазу может быть и более двух активных сторон, например четыре, шесть, восемь и т. д. В этом случае реальный паз состоит из нескольких элементарных пазов.
Так как секция имеет две активные стороны, то каждой секции соответствует один элементарный паз. Концы секции присоединяются к коллекторным пластинам, при этом к каждой пластине присоединяется начало одной секции и конец другой, т. е. на каждую секцию приходится одна коллекторная пластина. Таким образом, для якорной обмотки можно записать следующее равенство:
где S – число секций в обмотке якоря;
Zэ – число элементарных пазов;
К – число коллекторных пластин.
Для более удобного и наглядного изображения схем якорных обмоток цилиндрическую поверхность якоря вместе с обмоткой условно развертывают на плоскости и все соединения проводников изображают прямыми линиями на плоскости чертежа. Выполненная в таком виде схема обмотки называется развернутой.
В зависимости от формы секций и от способа присоединения их к коллектору различают следующие типы якорных обмоток: простая петлевая, сложная петлевая, простая волновая, сложная волновал и комбинированная.
Простая петлевая обмотка
В простой петлевой обмотке якоря каждая секция присоединена к двум рядом лежащим коллекторным пластинам. На рис. изображена одновитковая, и двухвитковая секция петлевой обмотки. При укладке секций на сердечник якоря начало каждой последующей секции соединяют с концом предыдущей секции, постепенно перемещаясь при этом по поверхности якоря (и коллектора) так, что за один обход укладывают все секции обмотки. В результате конец последней секции оказывается соединенным с началом первой, т. с. обмотка замыкается.
Одновитковая секция простой петлевой обмотки
Двухвитковая секция простой петлевой обмотки
Расстояние между активной стороной нижнего слоя первой секции и активной стороной верхнего слоя второй секции называют вторым частичным шагом обмотки по якорю, обозначают через y2 и измеряют в элементарных пазах.
Знание шагов обмотки y1 и y2 дает возможность определить результирующий шаг обмотки по якорю у, который представляет собой расстояние между расположенными в одном слое активными сторонами двух следующих друг за другом секций.
Из рис. следует, что
у= y1 — y2
Шаги петлевой обмотки:
а) – правоходовая обмотка: б) левоходовая обмотка
Шаги обмотки по якорю измеряются элементарными пазами, а шаг по коллектору — коллекторными делениями (пластинами). Обмотка, часть которой показана на рис. называется правоходовой, так как укладка секций этой обмотки происходит слева на право но якорю, в отличие ог левоходовой, в которой укладка секций обмотки по якорю идет справа налево. Как следует из определения, начало н конец каждой секции простой петлевой обмотки присоединяется к рядом лежащим коллекторным пластинам, следовательно,
В этом выражении знак «плюс» соответствует правоходовой обмотке, а знак «минус» — левоходовой.
Для определения всех шагов простой петлевой обмотки достаточно рассчитать первый частичный шаг по якорю
Прежде чем приступить к выполнению схемы, необходимо отметить следующее:
1. Все пазы сердечника якоря н секции обмотки нумеруются. При этом номер секции определяется номером паза, в верхней части которого находится одна из ее активных сторон.
2. Активные стороны верхнего слоя изображают на схеме сплошными линиями, а стороны нижнего слоя — пунктирными так, что одна половина секции, относящаяся к верхнему слою,
показывается на схеме сплошной линией, а другая, относящаяся к нижнему слою, — пунктирной.
Развернутую схему обмотки (рис. 2.8) строят в следующей последовательности. На листе бумаги размечают пазы, и наносят контуры полюсов. При этом следует учесть, что изображенный на схеме полюс представляет собой как бы зеркальное отражение полюса, находящегося над якорем. При выполнении схемы обмотки ширину полюса следует принять равной приблизительно 0,8 т. Полярность полюсов чередуется: N—S—N—S. Затем изображают коллекторные пластины и наносят на схему первую секцию, активные стороны которой расположатся в пазах 1 и 4. Коллекторные пластины, к которым присоединены концы первой секции, обозначают цифрами 1 и 2. Затем нумеруют остальные коллекторные пластины и последовательно наносят на схему другие секции (2, 3 и т. д.). Последняя секция (12) должна замкнуть обмотку, что будет свидетельствовать о правильно выполненной схеме.
Далее на схеме изображают щетки. Расстояние между щетками А и В должно соответствовать полюсному делению, т. е. должно соответствовать полюсному делению, т. е. должно составлять коллекторных делений. В нашем примере это расстояние равно коллекторным делениям. Что же касается расположения щеток на коллекторе, то при этом следует руководствоваться следующим. Предположим, что электрический контакт якорной обмотки с внешней цепью осуществлялся не через коллектор и щетки, а при помощи так называемых условных щеток, расположенных на поверхности якоря. В этом случае наибольшее значение э. д. с. машины соответствует положению условных щеток на геометрической нейтрали. Но так как коллекторные пластины, к которым присоединены секции, смещены относительно активных сторон этих секций приблизительно на 1/2τ, топереходя от условных щеток к реальным, следует расположить их на коллекторе по оси главных полюсов машины.
Развернутая схема простой петлевой обмотки:
2p = 4; Zэ = 12
Расположение условных щеток на якоре
Расположение щеток на коллекторе по оси главных полюсов
Обмотки якоря машин постоянного тока
Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, уложенных на сердечнике якоря определённым образом и припаянных к коллектору к «петушкам». Элемент обмотки якоря (секция или катушка) припаивается к двум коллекторным пластинам. Обмотки якоря обычно выполняют двухслойными. Они характеризуются следующими параметрами:
— числом секций на один паз Sn (Sn = S/N);
— числом реальных пазов Z;
— числом элементарных пазов Zэ;
— числом элементарных пазов в реальном пазе Zn;
— числом витков секции wc;
— числом пазовых сторон (общее число проводников) в обмотке N;
— числом пазовых сторон в одном пазу nп (nп = N/Z = 2wc×Sn).
Число элементарных пазов в реальном пазе определяется числом секций, приходящихся на один паз: Sn = S/N (рис. 3).
Рис. 3. Элементарные пазы.
Схемы обмоток якоря делают развёрнутыми, при этом все секции изображают одновитковыми. К каждой коллекторной пластине присоединяют начало одной секции и конец другой, т. е. на каждую секцию приходится одна коллекторная пластина. Следовательно, для обмотки якоря справедливо равенство:
S = Zэ = К,
где К – число коллекторных пластин.
Обмотки якоря машин постоянного тока бывают:
1). Петлевые (простые и сложные);
2). Волновые (простые и сложные);
3). Комбинированные (сочетание петлевых и волновых).
Простая петлевая обмотка (рис. 4) представляет собой набор секций, каждая из которых присоединена к двум рядом лежащим коллекторным пластинам, при этом начало каждой последующей секции соединяется с концом предыдущей. В результате конец последней секции оказывается присоединённым к началу первой.
Сложная петлевая обмотка представляет собой несколько (обычно две) простых петлевых обмоток уложенных на одном якоре и присоединённых к одному коллектору. Ширина щёток при сложной петлевой обмотке принимается такой, чтобы каждая щётка одновременно перекрывала столько коллекторных пластин, сколько простых обмоток в сложной. При этом простые обмотки оказываются соединёнными параллельно друг другу.
Рис. 4. Простая петлевая обмотка:
а) – правоходовая; б) – левоходовая; в) – развёрнутая схема.
Петлевые обмотки якорей машин постоянного тока применяют в маломощных двухполюсных машинах постоянного тока, а также в мощных (300 – 590 кВт) многополюсных машинах при низком напряжении.
Простую волновую обмотку (рис. 5) получают при последовательном соединении секций, находящихся под разными парами полюсов. Начало и конец каждой секции присоединены к коллекторным пластинам, удалённым друг от друга на расстояние шага обмотки по коллектору yк = y.
Рис. 5. Простая волновая обмотка:
а) – правоходовая; б) – левоходовая; в) – развёрнутая схема.
Сложная волновая обмотка представляет собой несколько простых волновых обмоток (обычно две), уложенные на одном якоре и присоединённые к одному коллектору. Их соединяют параллельно посредством щёток, которые выбирают таким образом, чтобы они перекрывали столько соседних пластин коллектора, сколько простых волновых обмоток образуют сложную.
Волновые обмотки якорей машин постоянного тока применяют в машинах мощностью до 50 кВт на напряжение 110 В и до 500 кВт на напряжение 440 В или 600 В.
Комбинированная (лягушачья) обмотка якоря (рис. 6) машины постоянного тока представляет собой сочетание, соединённых между собой, петлевой и волновой обмоток, расположенных в одних пазах и присоединённых к общему коллектору. В комбинированных обмотках секции укладывают в пазах в четыре слоя, а к каждой пластине коллектора припаивают по четыре вывода обмоток. Достоинством комбинированных обмоток является большое число параллельных ветвей, но их применение ограничено технологическими трудностями (сложность изготовления и укладки секций, сложность пайки их выводов к ״петушкам״ коллектора).
Рис. 6. Комбинированная (лягушачья) обмотка якоря:
а) – одна секция; б) – часть развёрнутой схемы.
Схемы обмоток якорей электрических машин постоянного тока выполняют развёрнутыми, т. е. обмотку и коллектор условно разрезают с одной стороны и разворачивают их на плоскости.
Если укладка секций обмотки ведётся слева направо по якорю, то обмотку называют правоходовой, а если укладка секций ведётся справа налево, то обмотку называют левоходовой
На развёрнутой схеме обмотки якоря указывают:
1. Число полюсов 2р.
2. Число коллекторных пластин К.
3 Расстояния между пазовыми сторонами секций по якорю: первый частичный шаг по якорю (расстояние между началом и концом секции) y1, второй частичный шаг по якорю (расстояние между началом предыдущей и концом последующей секции) y2 и результирующий шаг по якорю (расстояние между началом предыдущей и началом последующей секции) y.
4. Шаг обмотки по коллектору yк.
Шаги обмотки по якорю выражают в элементарных пазах, а шаг по коллектору – в коллекторных пластинах.
Для определения всех шагов простой петлевой обмотки достаточно рассчитать первый частичный шаг по якорю:
y1 = [Zэ/(2р)]±Ɛ,
где Ɛ – некоторая величина, меньшая 1, вычитая или суммируя которую получают значение шага y1, равное целому числу.·
Начало и конец каждой секции в простой петлевой обмотке присоединены к рядом лежащим коллекторным пластинам, следовательно, результирующий шаг по якорю:
Y = yк = ±1,
Второй частичный шаг по якорю:
y2 = y1-y = y1-1 (для правоходовой обмотки),
y2 = y1+y = y1+1 (для левоходовой обмотки).
Для определения всех шагов простой волновой обмотки достаточно рассчитать первый частичный шаг по якорю:
y1 = [Zэ/(2р)]±Ɛ.
Начало и конец каждой секции в простой волновой обмотке присоединены к коллекторным пластинам, находящимся на некотором расстоянии друг от друга, следовательно, результирующий шаг по якорю:
y = yк=(К±1)/р,
Второй частичный шаг обмотки определяют по формуле:
y2 = y-y1.