Модели авто на водороде

Водородный автомобиль. Обзор серийных моделей и перспективных концептов

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

Водородные автомобили начали массово появляться на рынке относительно недавно. Основная причина — экологически-коммерческая. С одной стороны, по всему миру регулярно вводят новые экостандарты, с другой — производителям классического транспорта с ДВС необходимо бороться за уже формирующийся рынок альтернативного, безопасного для природы транспорта.

Совет Hydrogen council дал прогноз, что к 2050 году «водородный рынок» заберет 18 % от уровня общего спроса на электроэнергию, а количество транспортных средств, использующих водород, превысит 425 миллионов. Попробуем разобраться с тем, какие модели представлены на рынке на текущий момент и что может появиться в ближайшем будущем.

Серийные модели водородных автомобилей

На рынке присутствует 10 серийных «водородников», в кратком обзоре мы разберем самые популярные модели.

Hyundai ix35 FCEV

Южнокорейский производитель выпускает модель, которая способна преодолеть почти 600 км на одной зарядке. Потребуется 5,64 кг водорода. Мощность силового агрегата — 134 л. с. Предельная скорость — 160 км/ч, разгон до «сотни» занимает 12,5 сек.

Hyundai Nexo

Вторая модель производителя, на наш вкус, более привлекательна визуально. Она была представлена 07.01.2018 г. в Лас-Вегасе. У Nexo запас хода на 200 километров больше, а мощность двигателя — на 29 «лошадок». Кроссовер оснащен силовым агрегатом, мощность которого составляет 163 л. с. Модель способна преодолеть почти 800 км на одной зарядке, достигать скорости до 150 км/ч и разгоняться до первой «сотни» за 9,5 секунд.

Вариантов комплектации два — Модерн и Премиум.

Honda Clarity и Clarity2

Седан D-класса был представлен широкой публике в Лос-Анджелесе, в конце осени 2007. Продажи в США, Европе и самой Японии начались следующим летом. 136 л. с. двигателя позволяют разогнать седан до «сотни» за 10 сек. Самая высокая скорость передвижения — 161 км/ч. 4,1 кг водорода хватает, чтобы преодолеть без заправки путь в 450 км.

Toyota Mirai

В конце осени 2014 автоконцерн презентовал четырехдверный серийный автомобиль-гибрид, а его продажи стартовали в Японии в конце года. В октябре 2019 появились автомашины второго поколения, поступившие в продажу летом 2020.

С полным баком седан способен проехать чуть больше 480 км. Двигатель Mirai дает возможность развивать скорость в 175 км/ч и за 9 секунд достигать отметки в 100 км/ч.

Интересные концепты гибридов

Автотехнологии постоянно совершенствуются, что позволяет автопроизводителям создавать диковинные концепт-кары. Мы решили отобрать следующие транспортные средства будущего:

Перспективы развития водородных авто и препятствия на этом пути

По аналогичному пути движется и Япония. На данный момент потребление водорода в стране достигло 4 тыс. тонн. Предполагается его рост к 2030 году до 300 тыс., а к 2050 — 15 млн тонн! Количество заправок вырастет до 320 единиц в 2025 году. Это даст возможность обслуживать автомобили в количестве 180/800 тыс. в 2025–2030 годах. К 2030 ожидается ввод в эксплуатацию и 1200 автобусов.

Западная Европа немного отстает, но и здесь для внедрения водородной энергетики используются программы H2ME и HyFive. Самые активные страны — Германия и Дания.

Серьезное препятствие — невозможность обеспечения многими ведущими странами водородом в требуемых объемах. Поэтому потребуются его поставки из Африки и Австралии. Здесь прекрасные условия для производства. Поэтому Германия заключила договор с Марокко на постройку фабрики для добычи чистого водорода. У немцев есть соглашение и с Нигерией. В этой стране предполагается получение водорода из возобновляемых источников энергии.

Компания «Кавасаки» вложила 338 млн долларов в проект по добыче водорода из бурого угля/лигнита в Австралии, в штате Виктория. Первые поставки в Японию ожидаются в 2021 году.

Компания Neoen из Франции создаст в городе Кристал Брук (Ю. Австралия) суперцентр. Для производства водорода будут использоваться ветровые и солнечные установки с мощью в 300 МВт. Суточная норма предполагается в пределах 20–25 тонн.

Сильные и слабые стороны водородных автомобилей

Проблемы инфраструктуры и добычи топлива

Заправочных станций пока маловато, не более тысячи во всем мире. Однако с каждым годом их количество растет. Если в 2018 в мире возвели 48 заправок, то в 2019 их было установлено уже 83.

Сеть продолжает развиваться: по итогам 2019 года, в Азии функционировало 178 водородных АЗС. Лидеры:

В Европе в конце 2019 года работало 177 станций. Они расположены в:

До конца 2020 года Германия планировала открыть еще 100 водородных АЗС, Франция — 34, Швейцария — 6. Добавим сюда и Нидерланды — 21.

Отметим, что строительство станций спонсируется не только концерном «Тойота», но и другими автопроизводителями, предполагающими применение технологии будущего:

Станции строятся с использованием единого стандарта, что облегчит жизнь обладателям водородных автомобилей.

Поведем итоги. Да, производство затратное, и есть сложности при создании сетей заправок. Но запасы традиционного топлива когда-то иссякнут, и альтернативные решения нужны уже сейчас. Водородный транспорт имеет такие же, если не большие, перспективы, как и электрический. Именно поэтому мировые автопроизводители уже сейчас прикладывают много усилий для его развития.

Если вы хотите быть в курсе того, что происходит в отрасли экологического транспорта мира, заглядывайте на наш сайт и подписывайтесь на Telegram-канал.

Источник

Водородные автомобили

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

«Если мы используем “чистый” электромобиль, то и электроэнергия, которая приводит его в движение, должна вырабатываться с помощью “чистой” энергии: солнце, вода или ветер. Однако время и продолжительность, когда мы будем производить такую электроэнергию, не будет совпадать с тем временем, когда мы нуждаемся в ней. Это может быть суточная разница, погодная, сезонная и т.д. Значит, нам надо хранить электроэнергию в батареях долгое время — понадобятся гигантские хранилища. Это нереально, тем более, что нынешние батареи не могут долго хранить энергию. Именно поэтому мы не мыслим будущего без водорода и автомобилей на топливных элементах», — это слова Геральда Килманна, вице-президента по исследованиям и разработкам Toyota.
Японский автопроизводитель видит свое будущее в развитии технологий на топливных элементах, где основным топливом должен стать водород. Но где и как его добывают таким способом, чтобы весь процесс стал экологически чистым? Для ответа на этот вопрос мы отправились в Японию на небольшую опытно-экспериментальную фабрику Hama Wing в Иокогаме, что в 40 минутах езды от Токио. Ее начали строить в 2015 году, а уже в 2018 фабрика должна выйти на проектную мощность. Речь идет о ветряной электростанции, расположенной на самом берегу бухты Иокогама, которая совмещена с производством водорода путем электролиза воды и его хранилищем.
Электричество необходимо для электролизной установки, которая расщепляет воду на кислород и водород, а также компрессоров, которые сжимают водород для последующего стационарного хранения в резервуаре, расположенном на самой станции, либо для транспортировки в грузовиках-заправщиках до конечного потребителя. В данном случае потребителями являются местные предприятия, использующие 2,5-тонные вилочные погрузчики на топливных элементах. Излишки электричества, вырабатываемые ветрогенератором, либо запасаются в хранилище с аккумуляторами, либо отдаются в электросеть города посредством распределительной щитовой. Это если вкратце, но самое интересное кроется в деталях.
Сам процесс выработки водорода происходит в электролизной установке, изготовленной компанией Toshiba. Это небольшой контейнер (длина — 6,2 м, ширина — 2,4 м, высота — 2,9 м), в котором находятся воздушный компрессор, электролизер, охладитель и воздушный ресивер. Рядом с электролизной установкой расположен небольшой резервуар с азотом. Азот нужен для работы охладителя, так как в процессе электролиза выделяется тепло — водород находится в нагретом состоянии. Таким образом система охлаждает всю установку и полученный газ, чтобы исключить возможность его взрыва.
Для транспортировки водорода к конечному потребителю используются дизель-электрические гибридные грузовики Hino Dutro Hybrid последовательно-параллельной схемы, выполненной на манер Toyota Prius. Одного грузовика хватает, чтобы заправить 6 погрузчиков на топливных элементах. Грузовики по сути являются мобильными водородоснабжающими АЗС: они оснащены оборудованием, позволяющим осуществлять закачку водорода под давлением 35 МПа непосредственно в погрузчик на местах, где отсутствует необходимая заправочная инфраструктура.
На заправку «полного бака» одного погрузчика, который вмещает 1,2 кг водорода, уходит 3 минуты. Этого запаса хватает на 8 часов непрерывной работы при температуре окружающей среды 0-40°С. Также на борту стоит преобразователь и бытовая розетка с напряжением 100В — таким образом погрузчик в любой момент может стать на 15 часов источником бесперебойного питания, к которому можно подключать приборы и устройства мощностью до 1 кВт.
У проекта Hama Wing есть несколько важных целей: первая — продемонстрировать всю технологическую цепочку производства и реализации низкоуглеродистого водорода от его получения и хранения до снабжения конечного потребителя; вторая — создать простую и понятную интегрированную систему, которая даст возможность оценить как практическую доступность водорода в качестве вида топлива, так и потенциал дальнейшего коммерческого использования этой системы; третья — использовать производство водорода как эффективную меру для развития региона и борьбы с глобальным потеплением.
О «социальной» значимости данного проекта говорит тот факт, что в центре почти 4-миллионной Иокогамы в парке Ринко, где любят отдыхать местные жители, установлено электронное табло, которое круглосуточно показывает информацию о текущем состоянии ветряка и количестве выработанной электроэнергии. Более того, каждый год порядка 14000 человек посещает «водородную фабрику», чтобы воочию увидеть, как происходит выработка топлива будущего.

Kia решила показать на выставке CES прототип нового Niro EV, который не только имеет электрический мотор, но и обладает массой современных «штук». Например, он уже сейчас может работать с перспективными мобильными сетями 5G, которые в десятки (если не сотни) раз быстрее нынешних. Благодаря 5G автомобиль получит возможность «разговаривать» с другими машинами, с домом хозяина и так далее. А еще эта Киа сможет общаться с пешеходами — различные сообщения появляются на «решетке радиатора» (написано в кавычках, ибо никакой решетки тут нет).
презентация нового водородного кроссовера Hyundai прошла не на автосалоне в Детройте, который откроется уже скоро, а на выставке гаджетов. Итак, встречайте — Hyundai Nexo. Автомобиль, который подтверждает, что корейцы решили бороться с Toyota за перспективный рынок водородомобилей. Кстати о том, как делают водород и почему именно он (а вовсе не электричество) имеет все шансы заменить в будущем традиционный бензин Три баллона для водорода расположены тут под полом задней части кузова и вмещают 6,35 килограмма топлива, а запас хода на одной заправке доходит до 595 километров.
А еще именно Hyundai Nexo станет первой машиной, которая примет участие в испытаниях автопилота четвёртого уровня автономности (подразумевает фактически полный отказ от водителя, его премьера на серийных автомобилях намечена на 2021 год). «Мы понимаем, что будущее — за автономным транспортом, и соответствующие технологии нуждаются в проверке в реальных условиях, что обеспечит их быстрое, безопасное и масштабируемое развертывание», — отметил Янг У Чхоль, вице-президент Hyundai Motor.
Заявленный запас хода Niro EV — меньше 400 километров. По нынешним временам это мало, поэтому корейцы и не акцентируют внимание на этих цифрах. Зато в салон они рекомендуют всем заглянуть. Ведь там новый информационный комплекс, который может появиться на многих моделях компании. Главные особенности: переход на сенсорное управление и функция распознавания голосов и лиц. Последнее означает, что машина сама будет понимать, кто садится за руль или на пассажирские сиденья. И автоматически настроит кресла и включит любимое радио.

Источник

Водородные автомобили

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

Эффективное, но дорогое топливо

Публика уже привыкла к борьбе за популярность гибридов, машин с ДВС или электрокаров. Последние пока что занимают самую выгодную позицию, а может ли появиться еще кто-то эффективнее и экологичнее? Тогда стоит вспомнить о транспорте на водородном топливе. Такие машины очень похожи на электрические авто отсутствием вредных выхлопов, однако главное достоинство в заправке — для наполнения баллона водородом до отказа нужно около 10 минут, а хватит горючего на дистанцию в 500 км. Кажется, намного выгоднее, чем электромобиль, однако так ли это на самом деле?

История водородных автомобилей

Еще в 1990-х годах производители углубились в разработку транспортных средств, которые передвигаются на топливных элементах. Основная причина поиска альтернативного горючего — введение новых стандартов выбросов CO2 и энергетический кризис. Единственные экологически чистые автомобили того времени — электрокары, имели несколько ограничений: длительная зарядка аккумулятора, небольшой запас хода, дорогостоящие комплектующие. В итоге компании начали искать другой способ привести машину в действие.

В качестве основного топливного элемента выбрали водород. Химические свойства, экологичность и распространенность в окружающей среде подтолкнули инженеров к мысли, что работа с этим веществом может принести доход и внушительные перспективы. Водородные машины должны были проезжать такие же дистанции, как и бензиновые аналоги, с той же мощностью и скоростью. Однако основная сложность была в другом — как изготовить необходимый двигатель и направить энергию топливного элемента в правильное русло?

Оказывается, первый ДВС на водороде был придуман еще в позапрошлом веке. Большинство экспертов склоняются к исследованиям французского естествоиспытателя Франсуа де Риваз, который в начале XIX века получал водород электролизом воды. В современном мире крупные производители почти одновременно выпустили водородные автомобили с похожей базовой технической “начинкой”.

Принцип работы автомобилей на водородных элементах

Механизм работы и типы моторов очень похожи на деятельность электромобилей, но главное отличие в способе создания энергии. Машины на топливных элементах тоже используют электричество для движения, но получают его не от заряда розеткой. Энергия вырабатывается в процессе физико-химических реакций, которые происходят в самом агрегате. Принцип работы состоит в следующем:

Подобный транспорт заправляют на специальных станциях, которые самостоятельно вырабатывают водород с помощью электролиза воды. Обслуживание автомобиля означает замену водородных элементов, которые исчерпали свой ресурс. Обычно заменяют катализаторную мембрану, которая помогает вырабатывать электричество.

Преимущества использования автомобилей на водородном двигателе

Недостатки владения водородными автомобилями

Рассмотреть минусы транспорта на топливных элементах можно на примере первого массового водородного авто Toyota Mirai. Как оказалось, у машин подобной модификации, есть и темная сторона.

Каковы будущие перспективы FCEV?

Идея использовать двигатели на топливных элементах потихоньку развивается не только в умах производителей, но и на деле. Особенно радужные перспективы применения водородных моторов для общественного транспорта. В Германии ездят сотни городских и туристических автобусов на водороде. В 2017 году был анонсирован выпуск первого поезда на водородном топливе, который сможет заменить дизельные составы.

Однако многие эксперты считают, что когда будет придуман способ быстрой зарядки электромобиля, то водородные машины могут отойти на второй, или даже третий план. Все дело в том, что решение всех проблем, связанных с транспортом на водороде займет намного больше времени, чем строительство сверхбыстрых станций. Первая такая “заправочная” станция появилась в США в 2017 году, а в 2018 году несколько предприятий должны открыться в Европе. Но пока станции для электрокаров не так быстро распространяются, водородные автомобили набирают популярность.

Источник

Как работает водородный двигатель и какие у него перспективы

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Где применяют водородное топливо?

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

Плюсы водородного двигателя

Минусы водородного двигателя

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Модели авто на водороде. Смотреть фото Модели авто на водороде. Смотреть картинку Модели авто на водороде. Картинка про Модели авто на водороде. Фото Модели авто на водороде

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *