Небольшие турбины для авто
Турбонаддув малых рабочих объемов. Размышления на тему.
Еще когда я притирал отверткой клапана движка от ГАЗ-63 турбонаддув не был новинкой. Его использовали по большей части для тяжелой техники, где привычные силовые установки пасовали перед нагрузкой, тем более систематической.
Сегодня турбины вещь привычная, более того уже довольно давно. И вспоминая все чему учили когда-то на автоделе, а потом в институте начало накладываться на реалии современного автопрома. Я сразу оговорюсь, что речь пойдет не об отколхоженых тазах с прикоряченным турбокитом ChinaTurboSuperRacerTopKit.
На www.drive.ru есть великолепнейшая статья, которая рассказывает о технологиях турбонаддува как таковых, вот она: www.drive.ru/technic/2007/06/05/321982.html
И задумался я, собственно, вот о чем. Понятно, что большие движки типа 3.0TFSI от турбинок только и только приобретают. Понятно, что приводные компрессоры облегчают движение тяжелых аппаратов, делая небольшие объемы приемлемыми на членовозах в условиях города. Но вот есть момент о новомодных движках малых объемов, но турбированных. 1.2TSI, 1,4TSI 1,0T и пр.
Такие двигателя показывают весьма неплохие значения мощности, и еще более впечатляющие — крутящего момента. Такой двигатель по расходу топлива близок к гибридным установкам. Великолепно чипуется и есть возможность нарастить мощность сохранив гарантию, оставив в ПТС пресловутые 100-125 сил, а на деле рассекая на 170 сильной машине. Неужели панацея? А уж для города! Разве не находка?
Долго думал, много курил.
И пришел таки к одной мысли с которой многие соглашаются. Против физики не попрешь. Двигатель работающий постоянно в режиме надрыва — нехорошо. И ладно если это просто раскрученный атмосферник, а вот постоянное избыточное давление долговечнее двига
тель не делает. Что? Неужели нужно избегать? Да нет же. Просто по мне так есть такая формула, родил ее сам и буду пользоваться. Никому не навязываю, но все же:
Если двигатель определенного объема способен хотя бы удовлетворительно тащить данную машину, то его турбированный вариант оправдан.
Хочу пример! Пожалуйста:
Двигатель года 2009 1.4TSI. Работает на гольфе, сырке, тигуане, А3 и вроде бы был одно время на супербе. Так вот, у гольфа был атмосферник 1,4 80 сил, который покупали и он как-то машину тащил. Его турбовый вариант, несомненно, оправдан на гольфе, но! На тигуане и супербе этот двиг я бы не стал брать. Потому что поставь на тигуан или суперб этот 1,4 без турбо и они не поедут.
Думаю логика ясна. Приглашаю подискутировать на эту тему.
Как правильно подобрать турбокомпрессор?
Важен ли правильный выбор размера турбины?
Правильно подобранный турбокомпрессор обеспечит уверенные обороты порога наддува, некритичное сужение системы, низкую температуру на впуске и невысокое давление в выпускном коллекторе. Любой человек умеющий читать и пользоваться телефоном, вполне может выбрать правильный размер турбонагнетателя. Никакой фундаментальной науки, никакого волшебства, только немного размышлений и аргументированных оценок. Например, Вы хотите самый низкий порог наддува? Хорошо, это возможно если вы проводите время в пробках. Это единственный случай когда важен низкий порог наддува. Будьте уверены – белее низкий порог наддува, меньшая мощность. С другой стороны, если вашей целью является максимальная мощность, турбонагнетатель нужного размера, скорее всего, не будет производить никакого давления наддува до верхней половины диапазона оборотов. Это неприемлемо с точки зрения гибких требований, предъявляемых к повседневному автомобилю. Необходим компромисс. Не скатывайтесь до низкого уровня журналистов, утверждающих, что качество системы турбонаддува характеризуется тем, сколь малые обороты нужны ей от двигателя, для создания наддува.
Конструкция турбонагнетателя влияет на его характеристики?
Нет. Фактически все турбины долговечны, эффективны и отвечают предъявленным требованиям. Характеристики турбокита никоим образом не связаны с моделью турбокомпрессора, если эта модель не является единственным турбонагнетателем требуемого размера, доступным для применения. Некоторые конструкции имеют встроенные вестгейты. Такое исполнение вестгейта требует немного больших усилий, чтобы сделать его столь же эффективным, как внешний вестгейт. В этом случае модель турбонагнетателя влияет на его характеристики, но только из-за интегрированного вестгейта.
Сдвоенные турбины дают какое-либо преимущество?
Иногда. Двигатель объемом более трех литров, может получить пользу от применения двух турбин. Две небольшие турбины могут слегка снизить инерционность турбосистемы, в противоположность одному большому турбонагнетателю, и обеспечивают лучший баланс между характеристиками наддува на низких и максимальных оборотах. При объеме более пяти литров, две турбины действительно станут необходимостью. Не подумайте, что парные турбины турбины более мощные, просто при их использовании накладывается очень много прочих факторов.
Что означает эффективность (КПД) компрессора и почему она важна?
Эффективность (КПД) компрессора не означает ничего иного, как реальную температуру воздуха, выходящего из турбонагнетателя при наддуве, относительно расчетного значения, основанного на термодинамических уравнениях. Вычислите одно значение, измерьте другое, разделите расчетное значение на измеренное, и вы получите эффективность компрессора. Соответствие эффективности компрессора конкретному двигателю важно в том, чтобы максимум эффективности компрессора находился где-нибудь около пика мощности или максимальных оборотов двигателя, чтобы компрессор давал самую низкую возможную тепловую нагрузку. “Высокоэффективный” является выражением дилетантов, изобретенный случайными авторами для описания турбокомпрессоров, обеспечивающих давление наддува на низких оборотах. Если что-то может быть совершенно неправильным, то это пример того. Давление наддува на низких оборотах означает не большой компрессор, который является не эффективным на высоких оборотах. Таким образом, он производит высокие температуры и является как раз противоположностью “высокоэффективному”
Давление в выпускном коллекторе, влияет ли на характеристики?
Да. Давление в выпускном коллекторе – критерий того, насколько хорошо турбина подобрана для конкретного двигателя. Давление в выпускном коллекторе не должно превышать давление наддува более чем в два с половиной раза. Это соблазняет изготовителей турбокита использовать слишком малые турбины, только для того, чтобы выдавать давление наддува на низких оборотах. Низкий порог наддува может быть и полезным, но переусердствовать при этом означает получить серьезную, более 20%, потерю мощности на оборотах выше средних. Необходимый баланс между наддувом на низких оборотах и наддувом на максимальных оборотах – задача проектирования, которую должен решать каждый решившийся на установку турбины. В общем, меньшее давление в выпускном коллекторе означает большее количество лошадиных сил. Другими словами, большие турбины бегают быстрее.
С небольшим нагнетателем точка максимальной эффективности достигается рано, и минимум тепловыделения будет на низких давлениях наддува. Чтобы снизить температуру при достижении большой мощности, необходим большой турбонагнетатель.
Когда точка максимальной эффективности находится на более высоких оборотах, это означает более низкую температуру воздуха в этом режиме. Более низкая температура дает более плотный воздух, который обеспечивает пик момента в верхнем диапазоне оборотов.
Выбор размера компрессора.
Необходимо понять нужную степень повышения наддува, степень расхода и плотности воздуха и степень эффективности нагнетателя перед тем, как приступать к подбору нагнетателя нужного размера.
Степень повышения давления.
Степень повышения давления расчитывается как полное абсолюдное давление, произведенное турбиной, разделенное на атмосферное давление.
Степень сжатия = 1+наддув/1
В конечном счете, мощность, полученная от использования турбонаддува, зависит от количества молекул кислорода в воздухе, сжатых в каждый кубический сантиметр объема. Это называется плотностью воздушного заряда. При прохождении через систему турбонаддува плотность немного изменяется.Когда воздушные молекулы принудительно «утрамбовываются» в нагнетателе до определенной степени сжатия, плотность не увеличивается на тоже самое значение, потомучто при сжатии увеличивается температура, и воздух расширяется обратно в прямой зависимости от того насколько он нагрет. Хотя воздушный заряд после сжатия окажется более плотным, его плотность будет всегда меньше, чем степень повышения давления. Для снижения негативного фактора этого эффекта применяют промежуточные охладители, позволяющие относительной плотности приблизиться к значению степени сжатия.
Зависимость относительной плотности от степени повышения давления. Плотность падает при увеличении температуры, поэтому фактическая степень увеличения массы воздуха всегда меньше чем степень повышения давления.
Расход воздуха равен обьему х обороты х 0.5 х Ev и поделенному на 1000000. Здесь 0.5 означает, что у четырех тактного двтгателя воздух в цилиндр поступает только в один оборот из двух, Ev это объемная эффективность. Делим на 1000000 для того, чтобы получить кубические метры из кубических см. Чтобы преобразовать кубические метры к кг/мин надо умножить на плотность воздуха на высоте географического места положения.
Выбор размера турбины.
Предполагаемое применение системы двигатель+турбонагнетатель является также основным критерием при выборе размера турбины, поскольку определяет выбор между моментом на низких, средних или максимальных оборотах двигателя. При этом выборе приходиться иметь дело с двумя величинами: основной размер турбины и отношение площадь/радиус (A/R).
Основной размер турбины.
Предполагается, что основной размер турбины характеризует ее способность производить мощность на валу, необходимую для привода компрессора при желаемом расходе воздуха. Поэтому большие турбины обеспечивают более высокие отдаваемые мощности, чем не большие. Для простоты картины, оценивать размер турбины можно по диаметруее выходного отверстия. Это является упращением теории турбин, однако на практике такой подход дает возможность оценить способность турбины обеспечить тот или иной расход.
Компрессор Garrett GT2860RS. Цифры справа — число оборотов турбины в минуту. Видно, что линия соединяющая точки PR=1 и PR=1.8 проходит за границей устойчивой работы компрессора.
Компрессор Garrett GT2557R, несмотря на КПД, меньший чем у Garrett 2860RS, лучше подходит для заданного применения.
Диаграмма диаметра выходного отверстия турбины относительно расхода воздуха на впуске — не точный инструмент для выбора, но приблизительный критерий первоначального отсеивания.
Разумный метод выбора турбины состоит в том чтобы проконсультироваться в компании, у которой вы приобретаете турбокомпрессор. Конечно, при выборе будет существовать возможность допустить ошибку в ту или иную сторону. И так как выбор происходит в пределах первоначального предназначения системы турбонаддува, имеет смысл каждый раз выбирать в большую сторону.
Выбор отношения A/R
Приблизительный диаметр выходного отверстия турбины, требуемый для привода компрессора при заданном расходе воздуха.
В то время как основной размер турбины является критерием расхода газа через турбину, отношение A/R дает инструмент точного выбора из диапазона основных размеров.Чтобы понять идею отношения A/R, представте кожух турбины в виде конуса, обернутого вокруг вала в виде спирали. Распрямите етот конус и отрежьте небольшой кусок, на некотором растоянии от конца. Отверстие в конце конуса — выходное сечение кожуха. Площадь этого отверстия и есть A в отношении A/R. Размер отверстия существенен, поскольку он определяет скорость, с которой выходят отработанные газы из улитки турбины и попадают на ее лопатки. При любом заданном расходе газов для увеличения скорости их истечения требуется уменьшение площади выходного отверстия. Эта имеет существенное значение для управления частотой вращения турбины. Необходимо иметь ввиду, что площадь выхода влияет на побочный эффект обратного давления отработанных газов и, таким образом, оказывает влияние на процессы, протекающие в камере сгорания двигателя.
R в отношении A/R — растояние от центра площади сечения в конусе до оси вращения вала турбины. Все A, разделенные на соответствующие им R дадут одинаковый результат.
R тоже оказывает сильное влияние на управление скоростью турбины. Представьте, что кончики лопаток турбины движутся с той же скоростью, что и газ, когда он попадает на лопатки. Отсюда легко понять, что чем меньше R, тем выше частота вращения турбины.
Увеличение скорости вращения турбины, которая зависит от отношения A/R, почти всегда достигается изменением площади выходного сечения кожуха турбины при остающемся неизвенном радиусе.
Выбор, который кажется логичной отправной точкой для отношения A/R — это одно, а фактически полученный правильный результат — это совсем другое. Обычно не избежны пробы и ошибки. Разумный выбор может быть обоснован количественным образом или, в некоторой степени, качественной характеристикой адекватности реакций турбосистемы. Количественная оценка требует измерения давления в выпускном коллекторе или на входе в турбины и сравнения его с давлением наддува.
Результатом неправильного выбора отношения A/R может стать увеличение иннерционности наддува, если отношение слишком велико. Отношение A/R может быть настолько большим, что не позволит турбонагнетателю развить обороты, достаточные для достижения желаемого давления наддува. Если отношение, напротив, чрезмерно мало, реакция турбонагнетателя может быть столь быстра, что будет казаться нервной и трудной для управления. Результат проявится и в виде отсутствия мощности в верхней трети диапазона оборотов двигателя. Это будет похоже на атмосферный двигатель, у карбюратора которого закрыта вторая заслонка.
При написании использованы материалы книги Maximum Bust.
Большой или маленький турбо
Проблемы маленьких турбин современных ДВС
Заводские турбосистемы современных автомобилей, нацелены на использование турбонаддува малых размеров, дабы уменьшить турболаг и обеспечить подхват двигателя с малых оборотов. На практике мы имеем двигатель, который имеет 70 и более % крутящего момента уже с полутора тысяч или около того, оборотов в минуту. Плюсы такого турбо, как уже стало ясно, это удобство использования автомобиля. Всем нам нравиться, когда автомобиль резво разгоняется с любых оборотов и без всяких задержек. Такой автомобиль легче продать! Но он обладает меньшим ресурсом и меньшей мощностью, чем автомобиль с большим турбокомпрессором. Причем, как ни странно, значительно меньшим ресурсом и мощностью!
Автомобиль рвущий с низов, так как турбина мгновенно откликается, не может показать выдающихся результатов мощности в связи с тем, что на высоких оборотах, такая турбина практически не «дует» и мотор работает в основном на атмосферной составляющей.
Проблемы смазки на малых оборотах
В современных двигателях большинство крутящего момента доступно уже на низких до 2000 об/мин. Но не стоит забывать, что система смазки лучше всего справляется со своей задачей на повышенных и высоких скоростях вращения. Чем быстрее окружная скорость набегающих поверхностей при вращении, тем устойчивей пленка масляного клина, при высоких нагрузках на шейки коленвала.
Маленькая турбина обладает малым входным отверстием, Что делает двигатель задушенным на средних и высоких оборотах. Выхлопные газы не могут с легкостью выйти с камеры сгорания, при этом повышается рабочая температура в цилиндрах, что сказывается крайне негативно на ресурсе двигателя.
Другими словами, на малых оборотах, масляный слой (при больших давлениях на коренные и шатунные шейки коленчатого вала) выдавливается из зазора вкладыш-шейка и получается полусухое трение которое в разы повышает износ кривошипно шатунного механизма.
Стоит учесть тот факт, что масляный насос при малых оборотах, обладает меньшей производительностью, при этом становиться совсем печально и боязно за мотор.
Тенденции современного автомобилестроения в общем
Многие могут возразить, мол такие солидные компании а-ля AUDI или FORD знают про это и позаботились обо всем, обеспечив мотор должным уровнем надежности при большой мощности, в том числе и на низких оборотах. На самом деле им нужно «ПРОДАТЬ», продать и еще раз продать автомобиль, который, как будтобы, обладает большой (кажущейся большой) мощностью. Надежностью же они обладают ровно такой, чтоб отходить гарантийный срок, а дальше хоть трава не расти! Почти все современные двигатели, даже атмосферники не обладают большим ресурсом и это ни для кого не секрет! Сверх высокая надежность автомобилей, уменьшает будущие продажи автокомпаний и сейчас все авто создаются для первого владельца, в дальнейшем уже он будет продавать автомобиль во вторые руки и никто, не будет винить автопроизводителя за «уставший мотор», винить будут только продавца мол «ушатал движок» итд.
Мощность заводских турбомоторов
Большая мощность некоторых заводских турбомоторов, достигается за счет усложнения конструкции мототра, напичкав его рядом дополнительных систем. Например устройств изменения длинны впускного коллектора, фазовращателей распредвалов итд, которые обеспечивают максимальную мощность мотора вместе с турбонаддувом, а на низких и средних оборотах работает крошечный турбонаддув.
Наддув на высоких оборотах
Справедливости ради стоит заметить, что даже маленький наддув создает определенный буст и на высоких оборотах, но это давление существует только (грубо говоря) во впуске и не создает ощутимого наполнения в цилиндрах двигателя. Так как применяются малые рессиверы, дроссельные заслонки и трубы впускных коллекторов небольшого диаметра. Да и собственно сам компрессор малого турбонаддува имеет порой, просто смешные диаметры патрубков.
Преимущества большого турбонаддува
Если нужен простой, мощный, с большим ресурсом двигатель, то он должен создаваться на основе довольно крупного турбонаддува. Буст не должен проявляться в полной мере, на малых оборотах, также прийдется мириться с некоторой задержкой, так как другого не дано. В автоспорте ходит поговорка: Если нет задержки, значит нет и наддува!
Другими словами на малых оборотах, крутящий момент должен обеспечивать хорошо построенный атмосферный двигатель с акцентом на низкие обороты, на высоких оборотах на первый план выходит турбокомпрессор, который при достаточных размерах надует любой «низовой» мотор, даже если он имеет не очень хорошую продувку в «верху.» Но если мотор «верховой» то естественно он надует его еще больше!
Большой турбонаддув меньше нагревает впускной воздух. Соответственно от интеркуллера будет больше толку, либо можно использовать его уменьшенный вариант. Более холодный воздух попадет в цилиндры, соответственно мы получим больше мощности и меньшую возможность, возникновения аномальных процессов в камере сгорания.
Ресурс с большим турбо
Возможно я сейчас удивлю тех кто считает, что сильно надутые двигатели, с большой мощностью, имеют очень маленький ресурс и если поставить турбину побольше то она просто «разорвет» мотор. На самом деле может так сложиться, что один и тот же правильно построенный двигатель с турбо и без будет иметь практически одинаковый ресурс. Только второй будет иметь в 2 раза большую мощность.
Сказки? Читайте дальше! Основной износ сильнонагруженного двигателя, наблюдается в кривошипношатунном механизме. Атмосферный мотор, на высоких оборотах, имеет больший показатель инерционных составляющих нагрузок чем турбо. Представим тракт выпуска, когда коленвал толкает поршень вверх, а затем при прохождении верхней мертвой точки коленвал дергает его вместе с шатуном и пальцем вниз обеспечивая тракт впуска. Основная проблема в том что здесь происходит резкий перепад усилий когда колено толкает поршень вверх все зазоры выбраны внизу (шатун палец, коленвал шатун), затем колено всю эту систему резко дергает в обратном направлении, и все зазоры с размахом выбираются в обратном направлении, получаются своего рода ударные нагрузки. Здесь таятся самые большие разрушающие нагрузки в атмосферном двигателе, которые в максимальной мере проявляются на высоких оборотах вращения.
В турбомоторе, при открытии впускного клапана, еще до прихода поршня в верхнюю мертвую точку уже присутствует положительное давление за счет наддува, которое прижимает поршень к коленвалу при последующем движении его вниз к нижней мертвой точке. Так как как поршень постоянно прижимается в одном направлении, то знакопеременные нагрузки уменьшаются на КШМ. Хоть нагрузки на шейки и коленвала и пальца могут быть больше, за счет отсутствия знакопеременных составляющих нагрузок, ресурс деталей КШМ не уменьшается, а в некоторых случаях может даже увеличится.
Для примера: (Поршень диаметром 80мм при одном баре наддува, имеет подпор на впуске около 96 кг )
Также стоит заметить тот факт, что в надутом моторе с мощностью в 2 раза большей от атмосферного, максимальный пик давления, может быть лишь на 25% больше, при грамотно построенной системе. Хотя сумма площади давлений будет примерно в 2 раза выше. Связано это в основном с меньшей степенью сжатия и большей камерой сгорания в «разжатом» турбо двигателе. В то время как в двигателе с высокой степенью сжатия наблюдается большее расширение рабочей смеси и большее падение давления относительно максимального пика.
Надеюсь статья будет полезна!
Если есть сомнения давайте обсудим их в комментариях.
Как выбрать турбину для авто
Турбина способствует увеличению плотности воздуха, который поступает в двигатель автомобиля, обеспечивая тем самым возможность сжигания большего количества топлива. Чем больше сгорает топлива, тем больше возникает энергии от процесса сгорания, и соответственно создается больший момент.
Преимущество турбовых двигателей заключается в том, что имеется возможность значительно увеличить давление.
Турбина имеет в своем составе два основных элемента, которыми являются непосредственно сама турбина и компрессор. Выпускной газ воздействует на крыльчатку, а именно раскручивает ее, проходя через турбину. Вращение крыльчатки, которая представляет собой вентилятор в корпусе турбины, передается в другую часть устройства — компрессору. Компрессорный вентилятор нагнетает воздух в область двигателя.
Как уже можно было догадаться, чем большим будет давление, тем большее количество воздуха будет поступать в мотор. Однако бесконечное увеличение давления в двигателе, без возникновения проблем, просто невозможно. В том случае, если турбина работает в усиленном режиме, возникает лишнее тепло, обратное давление и пульсация, что может привести к появлению трещины на корпусе турбины, сокращению срока службы подшипников, протечке масла и даже повреждению двигателя. Поэтому давление должно увеличиваться, не злоупотребляя этим.
Стандартный вариант замены турбины заключается в монтаже высокопоточного компрессора, а также в некоторых случаях и увеличенной крыльчатки турбины. Это позволяет достичь обратного эффекта, который заключается в том, что уровень воздействия выпускных газов на турбину будет снижен, что способствует в свою очередь снижению ее скорости и давления на начальном этапе раскручивания. Чаще всего, корпуса турбины и компрессора могут быть заменены на большие размеры, что открывает возможность для пропуска более значительного количества газа.
Однако следует не забывать, что для отдельной модели автомобиля, турбина была подобрана производителем. Это означает, что им было предусмотрено правильное соответствие диаметра выхода и входа, а именно их размеры. Но в последнее время большим спросом стали пользоваться «гибридные» турбины. Стоит понимать, что такой вид турбины неспособен обеспечить такую же мощность, как стандартная турбина.
В большей части турбин используются 180-градусные упорные подшипники, которые располагаются в корпусе. Такой подшипник отлично справляется со своими функциями при воздействии нормального давления, однако при повышении уровня давления быстро поддается изнашиванию. Данную проблему способен решить 360-градусный подшипник, который увеличивает надежность и срок эксплуатации самой турбины.
Возможная замена
Если владелец автомобиля располагает небольшим бюджетом, то для него оптимальным вариантом могут стать японские б/у запчасти, которые предлагаются в большом ассортименте и размерах. В этом случае ориентиром должен быть объем двигателя, по размерам которого и должна подбираться турбина.
Современные турбины
При изготовлении современных турбин, очень часто используют керамический материал, который обладает меньшей плотностью, в отличие от стали, что позволяет уменьшать инерцию и быстрее раскручивать турбину. Большая часть современных турбин изготавливаются из сплава, в основу которого входит никель. Турбины из керамики часто устанавливались на старые модели Ниссанов (запчасти для современных моделей Ниссанов, например, для Ниссан Кашкай смотрите здесь). А все потому, что именно этот производитель первым обнаружил тот факт, что керамика положительно воздействует на турбину. Однако данный материал, наиболее чувствителен к воздействиям неблагоприятных элементов, которые поступают из выпускного коллектора. Также такие турбины могут повреждаться от ударов, поэтому их лучше не ронять.
Шариковые подшипники
Цель использования шариков заключается в достижении уменьшения уровня трения, а значит увеличения силы выпуска. И опять же, первенцем в достижении таких показателей стал Ниссан.
Турбины Garrett шарикоподшипникового или роллерного типа отличаются шестью болтами на корпусе. Этот производитель является лидером шарикоподшипниковых турбин, и снабжает своей продукцией многие знаменитые фирмы.
Турбины с раздвоенным пульсом
Данный вид турбин имеет раздельные пути, которые ведут к турбине, что приводит к улучшению отдачи. Турбины с двойным выходом сегодня доступны от многих компаний, предлагающих тюнинговые услуги.
Перепускные клапана
Целью перепускного клапана является пуск некоторой части выпускного газа в турбинный обход, что способствует ограничению скорости вращения самой турбины, и, следовательно, давления на выпускном коллекторе. Перепускные клапаны бывают внутренними и внешними. На большей части турбин используют внутренние клапаны. Они обеспечивают ограниченный поток воздуха проходящего по турбине, что предотвращает повреждение двигателя.
Внешние клапаны устанавливаются в отдельности от турбины.