Недостатки автомобилей на водороде

Автомобиль на водороде. Пора ли прощаться с бензином?

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Привет, Хабр! К нашей прошлой статье о водородной энергетике вы написали очень интересные и справедливые комментарии, ответы на которые вы сможете найти в этом материале, посвященном использованию водорода в автомобилях.

Действительно, в сравнении с бензином водород — одна сплошная проблема: его очень трудно хранить и непросто получать, он взрывоопасен, а водородные автомобили в разы дороже бензиновых. Но при этом водород считается наиболее перспективным видом альтернативного топлива для транспорта. К тому же, на производство водородных автомобилей инвесторы готовы тратить многомиллиардные инвестиции.

Приговор бензину уже подписан

Согласно последнему отчету BP Statistical Review of World Energy 2018, мировые разведанные запасы нефти составляют 1,696 млрд баррелей, чего при сохранении текущего уровня потребления хватит лет на пятьдесят. Неразведанные запасы нефти, предположительно, дадут нам еще полвека углеводородной энергетики, но и стоимость ее добычи может оказаться такой, что нефть попросту станет невыгодна в сравнении с другими источниками энергии. Когда месторождения с удобной добычей истощатся, цена на сырье автоматически пойдет вверх: если сейчас стоимость добычи барреля в России некоторыми оценивается в 2-3 доллара (по альтернативным оценкам, в 18 долларов), то для сланцевой нефти это уже 30-50 долларов. А впереди у человечества реальная перспектива перейти на добычу шельфовой и арктической нефти, цена которой будет еще выше.

Всплеск интереса к электротранспорту в 70-х годах XX века возник как раз на фоне скачкообразного роста цен на нефть из-за политического кризиса — недостатка в сырье не было, но четырехкратный рост цен мгновенно сделал бензиновые автомобили и нефтяную энергетику роскошью.

А еще на пути бензиновых авто встали более спорные препятствия — забота об экологии в городах и странах, где автомобильный выхлоп стал проблемой. Из-за этого, например, Германия приняла резолюцию о запрете производства автомобилей с ДВС с 2030 года. Франция и Великобритания обещают отказаться от углеводородного топлива до 2040 года. Нидерланды — до 2030 года. Норвегия — до 2025 года. Даже Индия и Китай рассчитывают запретить продажи дизельных и бензиновых авто с 2030 года. Париж, Мадрид, Афины и Мексика запретят к использованию дизельные машины с 2025 года.

Сжигание водорода в ДВС

Сжигание водорода в обычном двигателе внутреннего сгорания кажется самым простым и логичным способом применения газа, ведь водород легко воспламеняется и сгорает без остатка. Однако из-за разницы в свойствах бензина и водорода перевести ДВС на новый вид топлива оказалось не так-то просто. Сложности возникли с долгосрочной эксплуатацией движков: водород вызывал перегрев клапанов, поршневой группы и масла, из-за втрое большей, чем у бензина, теплоты сгорания (141 МДж/кг против 44 МДж/кг). Водород неплохо показывал себя на низких оборотах движка, но при росте нагрузки возникала детонация. Возможным решением проблемы была замена водорода на бензиново-водородную смесь, концентрация газа в которой динамически уменьшалась по мере роста оборотов двигателя.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде
Двухтопливная BMW Hydrogen 7 в кузове E65 сжигает водород в ДВС вместо бензина
Источник: Sachi Gahan / Flickr

Одним из немногих серийных автомобилей, где водород сжигался в ДВС подобно другому топливу, стал BMW Hydrogen 7, вышедший всего в 100 экземплярах в 2006–2008 годах. Модифицированный шестилитровый ДВС V12 работал на бензине или водороде, переключение между видами топлива происходило автоматически.

Несмотря на успешное решение проблемы перегрева клапанов, на этом проекте все равно поставили крест. Во-первых, при сжигании водорода мощность двигателя падала примерно на 20% — с 260 л. с. на бензине до 228 л. с. Во-вторых, 8 кг водорода хватало всего на 200 км пробега, что в разы меньше, чем в случае с дизельными элементами. В-третьих, Hydrogen 7 появился слишком рано — когда «зеленые» автомобили еще не были так актуальны. В-четвертых, ходили упорные слухи, что Агентство по охране окружающей среды США не разрешило называть Hydrogen 7 автомобилем без вредного выхлопа — из-за особенностей работы ДВС, частицы моторного масла попадали в камеру сгорания и там воспламенялись вместе с водородом.
Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде
Mazda RX-8 Hydrogen RE — тот случай, когда водород загубил всю динамику роторного двигателя. Источник: Mazda

Еще раньше, в 2003 году, была представлена двухтопливная Mazda RX-8 Hydrogen RE, добравшаяся до заказчиков только к 2007 году. При переходе на водород от мощности легендарного роторного RX-8 не оставалось и следа — мощность падала с 206 до 107 л. с., а максимальная скорость — до 170 км/ч.

BMW Hydrogen 7 и Mazda RX-8 Hydrogen RE были лебединой песней водородных ДВС: к моменту появления этих автомобилей стало окончательно ясно, что куда эффективней использовать водород в давно известных топливных элементах, чем просто жечь.

Топливные элементы в автомобилях

Первым успешным экспериментом по созданию транспортного средства на водородном топливном элементе можно считать трактор Гарри Карла, построенный в 1959 году. Правда, замена дизеля на топливный элемент снизила мощность трактора до 20 л. с.

В последние полвека водородный транспорт выпускался в штучных экземплярах. Например, в 2001 году в США появился автобус Generation II, водород для которого производился из метанола. Топливные элементы создавали мощность до 100 кВт, то есть около 136 л. с. В том же году российский ВАЗ представил «Ниву» на водородных элементах, известную под именем «Антэл-1». Электродвигатель выдавал мощность до 25 кВт (34 л. с.), разгонял авто максимум до 85 км/ч и на одной заправке работал 200 км. Единственный произведенный автомобиль остался «лабораторией на колесах».

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде
Российский автомобиль на водородных топливных элементах — в то время технологии ушли дальше дизайна. Источник: «АвтоВАЗ»

В 2013 году Toyota встряхнула автомобильный мир, представив модель Mirai на водородных топливных элементах. Уникальность ситуации была в том, что Toyota Mirai был не концепт-каром, а готовым к серийному производству автомобилем, продажи которого начались уже год спустя. В отличие от электромобилей на аккумуляторах, Mirai сама вырабатывала электричество для себя.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде
Toyota Mirai. Источник: Toyota

Электродвигатель переднеприводной Mirai имеет максимальную мощность 154 л. с., что немного для современного электромобиля, но весьма неплохо в сравнении с водородными авто прошлого. Теоретический запас хода на 5 кг водорода составляет 500 км, фактический — около 350 км. Tesla Model S по паспорту может пройти 540 км. Вот только на заправку полного бака водорода уходит 3 минуты, а батарея Tesla заряжается до 100% за 75 минут на станциях Tesla Supercharger и до 30 часов от обычной розетки на 220 В.

Постоянный ток из 370 водородных топливных элементов Mirai преобразуется в переменный, а напряжение увеличивается до 650 В. Максимальная скорость машины достигает 175 км/ч — немного в сравнении с углеводородным топливом, но более чем достаточно для повседневной езды. Для запаса энергии используется никель-металл-гидридный аккумулятор на 21 кВт∙ч, в который передаётся избыток от топливных элементов и энергия рекуперативного торможения. Учитывая японские реалии, при которых населённые пункты могут в любой момент пострадать от землетрясения, в багажнике Mirai 2016-го модельного года установлен разъем CHAdeMO, через который можно организовать электроснабжение небольшого частного дома, что делает автомобиль генератором на колёсах с предельной ёмкостью 150 кВт∙ч.

Кстати, всего за несколько лет Toyota удалось значительно уменьшить массу генератора: если в начале века в прототипах он весил 108 кг и выдавал 122 л. с., то в Mirai топливный элемент вдвое компактней (объем 37 литров) и весит 56 кг. Справедливо будет прибавить к этому 87 кг топливных баков.

Для сравнения, популярный современный турбомотор Volkswagen 1.4 TSI схожей с Mirai мощностью 140–160 л.с. славится своей «лёгкостью» благодаря алюминиевой конструкции — он весит 106 кг плюс 38–45 кг бензина в баке. Кстати, батарея Tesla Model S весит 540 кг!

За 4 км пробега Mirai вырабатывает только 240 мл дистиллированной, относительно безопасной для питья воды — энтузиасты, пробовавшие «выхлоп» Mirai, сообщали только о лёгком привкусе пластика.

Пить воду, слитую из Mirai, безопасно, хотя сперва зрелище шокирует

В Toyota Mirai установлено сразу два бака для водорода на 60 и 62 литра, в сумме вмещающих 5 кг водорода под давлением 700 атмосфер. Toyota разрабатывает и производит водородные баки самостоятельно вот уже 18 лет. Бак Mirai сделан из нескольких слоёв пластика с углеволокном и стеклотканью. Использование таких материалов, во-первых, повысило стойкость хранилищ к деформации и пробитию, а, во-вторых, решило проблему наводораживания металла, из-за которого стальные баки теряли свои свойства, гибкость и покрывались микротрещинами.
Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде
Строение Toyota Mirai. Спереди расположен электродвигатель, топливный элемент спрятан под водительским сидением, а под задним рядом и в багажнике установлены баки и аккумулятор. Источник: Toyota

Каковы перспективы?

По оценкам Bloomberg, к 2040 году автомобили будут потреблять 1900 тераватт-час вместо 13 млн баррелей в сутки, то есть 8% от спроса на электричество по состоянию на 2015 год. 8% — пустяк, если учесть, что сейчас до 70% добываемой в мире нефти уходит на производство топлива для транспорта.

Перспективы рынка аккумуляторных электромобилей куда более явные и впечатляющие, чем в случае с водородными топливными ячейками. В 2017 году рынок электромобилей составлял 17,4 млрд долларов, в то время как водородный автомобильный рынок оценивался в 2 млрд долларов. Несмотря на такую разницу, инвесторы продолжают интересоваться водородной энергетикой и финансировать новые разработки.

Примером тому является созданный в 2017 году «Водородный совет» (Hydrogen Council), включающий 39 крупные компании, таких как Audi, BMW, Honda, Toyota, Daimler, GM, Hyundai. Его целью является исследование и разработка новых водородных технологий и их последующее внедрение в нашу жизнь.

Источник

Автомобиль на водороде. Пора ли прощаться с бензином?

Материал посвящен использованию водорода в автомобилях.

Действительно, в сравнении с бензином водород — одна сплошная проблема: его очень трудно хранить и непросто получать, он взрывоопасен, а водородные автомобили в разы дороже бензиновых. Но при этом водород считается наиболее перспективным видом альтернативного топлива для транспорта. К тому же, на производство водородных автомобилей инвесторы готовы тратить многомиллиардные инвестиции.

Приговор бензину уже подписан

Согласно последнему отчету BP Statistical Review of World Energy 2018, мировые разведанные запасы нефти составляют 1,696 млрд баррелей, чего при сохранении текущего уровня потребления хватит лет на пятьдесят. Неразведанные запасы нефти, предположительно, дадут нам еще полвека углеводородной энергетики, но и стоимость ее добычи может оказаться такой, что нефть попросту станет невыгодна в сравнении с другими источниками энергии. Когда месторождения с удобной добычей истощатся, цена на сырье автоматически пойдет вверх: если сейчас стоимость добычи барреля в России некоторыми оценивается в 2-3 доллара (по альтернативным оценкам, в 18 долларов), то для сланцевой нефти это уже 30-50 долларов. А впереди у человечества реальная перспектива перейти на добычу шельфовой и арктической нефти, цена которой будет еще выше.

Всплеск интереса к электротранспорту в 70-х годах XX века возник как раз на фоне скачкообразного роста цен на нефть из-за политического кризиса — недостатка в сырье не было, но четырехкратный рост цен мгновенно сделал бензиновые автомобили и нефтяную энергетику роскошью.

А еще на пути бензиновых авто встали более спорные препятствия — забота об экологии в городах и странах, где автомобильный выхлоп стал проблемой. Из-за этого, например, Германия приняла резолюцию о запрете производства автомобилей с ДВС с 2030 года. Франция и Великобритания обещают отказаться от углеводородного топлива до 2040 года. Нидерланды — до 2030 года. Норвегия — до 2025 года. Даже Индия и Китай рассчитывают запретить продажи дизельных и бензиновых авто с 2030 года. Париж, Мадрид, Афины и Мексика запретят к использованию дизельные машины с 2025 года.

Сжигание водорода в ДВС

Сжигание водорода в обычном двигателе внутреннего сгорания кажется самым простым и логичным способом применения газа, ведь водород легко воспламеняется и сгорает без остатка. Однако из-за разницы в свойствах бензина и водорода перевести ДВС на новый вид топлива оказалось не так-то просто. Сложности возникли с долгосрочной эксплуатацией движков: водород вызывал перегрев клапанов, поршневой группы и масла, из-за втрое большей, чем у бензина, теплоты сгорания (141 МДж/кг против 44 МДж/кг). Водород неплохо показывал себя на низких оборотах движка, но при росте нагрузки возникала детонация. Возможным решением проблемы была замена водорода на бензиново-водородную смесь, концентрация газа в которой динамически уменьшалась по мере роста оборотов двигателя.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Двухтопливная BMW Hydrogen 7 в кузове E65 сжигает водород в ДВС вместо бензина

Источник: Sachi Gahan / Flickr

Одним из немногих серийных автомобилей, где водород сжигался в ДВС подобно другому топливу, стал BMW Hydrogen 7, вышедший всего в 100 экземплярах в 2006–2008 годах. Модифицированный шестилитровый ДВС V12 работал на бензине или водороде, переключение между видами топлива происходило автоматически.

Несмотря на успешное решение проблемы перегрева клапанов, на этом проекте все равно поставили крест. Во-первых, при сжигании водорода мощность двигателя падала примерно на 20% — с 260 л. с. на бензине до 228 л. с. Во-вторых, 8 кг водорода хватало всего на 200 км пробега, что в разы меньше, чем в случае с дизельными элементами. В-третьих, Hydrogen 7 появился слишком рано — когда «зеленые» автомобили еще не были так актуальны. В-четвертых, ходили упорные слухи, что Агентство по охране окружающей среды США не разрешило называть Hydrogen 7 автомобилем без вредного выхлопа — из-за особенностей работы ДВС, частицы моторного масла попадали в камеру сгорания и там воспламенялись вместе с водородом.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Mazda RX-8 Hydrogen RE — тот случай, когда водород загубил всю динамику роторного двигателя. Источник: Mazda

Еще раньше, в 2003 году, была представлена двухтопливная Mazda RX-8 Hydrogen RE, добравшаяся до заказчиков только к 2007 году. При переходе на водород от мощности легендарного роторного RX-8 не оставалось и следа — мощность падала с 206 до 107 л. с., а максимальная скорость — до 170 км/ч.

BMW Hydrogen 7 и Mazda RX-8 Hydrogen RE были лебединой песней водородных ДВС: к моменту появления этих автомобилей стало окончательно ясно, что куда эффективней использовать водород в давно известных топливных элементах, чем просто жечь.

Топливные элементы в автомобилях

Первым успешным экспериментом по созданию транспортного средства на водородном топливном элементе можно считать трактор Гарри Карла, построенный в 1959 году. Правда, замена дизеля на топливный элемент снизила мощность трактора до 20 л. с.

В последние полвека водородный транспорт выпускался в штучных экземплярах. Например, в 2001 году в США появился автобус Generation II, водород для которого производился из метанола. Топливные элементы создавали мощность до 100 кВт, то есть около 136 л. с. В том же году российский ВАЗ представил «Ниву» на водородных элементах, известную под именем «Антэл-1». Электродвигатель выдавал мощность до 25 кВт (34 л. с.), разгонял авто максимум до 85 км/ч и на одной заправке работал 200 км. Единственный произведенный автомобиль остался «лабораторией на колесах».

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Российский автомобиль на водородных топливных элементах — в то время технологии ушли дальше дизайна. Источник: «АвтоВАЗ»

В 2013 году Toyota встряхнула автомобильный мир, представив модель Mirai на водородных топливных элементах. Уникальность ситуации была в том, что Toyota Mirai был не концепт-каром, а готовым к серийному производству автомобилем, продажи которого начались уже год спустя. В отличие от электромобилей на аккумуляторах, Mirai сама вырабатывала электричество для себя.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Toyota Mirai. Источник: Toyota

Электродвигатель переднеприводной Mirai имеет максимальную мощность 154 л. с., что немного для современного электромобиля, но весьма неплохо в сравнении с водородными авто прошлого. Теоретический запас хода на 5 кг водорода составляет 500 км, фактический — около 350 км. Tesla Model S по паспорту может пройти 540 км. Вот только на заправку полного бака водорода уходит 3 минуты, а батарея Tesla заряжается до 100% за 75 минут на станциях Tesla Supercharger и до 30 часов от обычной розетки на 220 В.

Постоянный ток из 370 водородных топливных элементов Mirai преобразуется в переменный, а напряжение увеличивается до 650 В. Максимальная скорость машины достигает 175 км/ч — немного в сравнении с углеводородным топливом, но более чем достаточно для повседневной езды. Для запаса энергии используется никель-металл-гидридный аккумулятор на 21 кВт∙ч, в который передаётся избыток от топливных элементов и энергия рекуперативного торможения. Учитывая японские реалии, при которых населённые пункты могут в любой момент пострадать от землетрясения, в багажнике Mirai 2016-го модельного года установлен разъем CHAdeMO, через который можно организовать электроснабжение небольшого частного дома, что делает автомобиль генератором на колёсах с предельной ёмкостью 150 кВт∙ч.

Кстати, всего за несколько лет Toyota удалось значительно уменьшить массу генератора: если в начале века в прототипах он весил 108 кг и выдавал 122 л. с., то в Mirai топливный элемент вдвое компактней (объем 37 литров) и весит 56 кг. Справедливо будет прибавить к этому 87 кг топливных баков.

Для сравнения, популярный современный турбомотор Volkswagen 1.4 TSI схожей с Mirai мощностью 140–160 л.с. славится своей «лёгкостью» благодаря алюминиевой конструкции — он весит 106 кг плюс 38–45 кг бензина в баке. Кстати, батарея Tesla Model S весит 540 кг!

За 4 км пробега Mirai вырабатывает только 240 мл дистиллированной, относительно безопасной для питья воды — энтузиасты, пробовавшие «выхлоп» Mirai, сообщали только о лёгком привкусе пластика.

Пить воду, слитую из Mirai, безопасно, хотя сперва зрелище шокирует

В Toyota Mirai установлено сразу два бака для водорода на 60 и 62 литра, в сумме вмещающих 5 кг водорода под давлением 700 атмосфер. Toyota разрабатывает и производит водородные баки самостоятельно вот уже 18 лет. Бак Mirai сделан из нескольких слоёв пластика с углеволокном и стеклотканью. Использование таких материалов, во-первых, повысило стойкость хранилищ к деформации и пробитию, а, во-вторых, решило проблему наводораживания металла, из-за которого стальные баки теряли свои свойства, гибкость и покрывались микротрещинами.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Строение Toyota Mirai. Спереди расположен электродвигатель, топливный элемент спрятан под водительским сидением, а под задним рядом и в багажнике установлены баки и аккумулятор. Источник: Toyota

По оценкам Bloomberg, к 2040 году автомобили будут потреблять 1900 тераватт-час вместо 13 млн баррелей в сутки, то есть 8% от спроса на электричество по состоянию на 2015 год. 8% — пустяк, если учесть, что сейчас до 70% добываемой в мире нефти уходит на производство топлива для транспорта.

Перспективы рынка аккумуляторных электромобилей куда более явные и впечатляющие, чем в случае с водородными топливными ячейками. В 2017 году рынок электромобилей составлял 17,4 млрд долларов, в то время как водородный автомобильный рынок оценивался в 2 млрд долларов. Несмотря на такую разницу, инвесторы продолжают интересоваться водородной энергетикой и финансировать новые разработки.

Примером тому является созданный в 2017 году «Водородный совет» (Hydrogen Council), включающий 39 крупные компании, таких как Audi, BMW, Honda, Toyota, Daimler, GM, Hyundai. Его целью является исследование и разработка новых водородных технологий и их последующее внедрение в нашу жизнь.

Источник

Недостатки автомобилей на водороде

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Автомобили на водородном топливе: виды, достоинства и недостатки

Водородное топливо является хорошей альтернативой бензину и дизелю. И многие производители задумались о выпуске авто на водороде.

Подробное описание

Исчерпаемость природных ресурсов, в частности, нефти, давно заставляет ученых ломать головы над поиском альтернативных источников энергии. Немаловажным фактором является и угроза экологической катастрофы, ведь дым и копоть, вырабатываемые бензиновыми и дизельными транспортными средствами по-настоящему отравляют окружающую среду. Именно автопромышленность на сегодня является главным источником загрязнения нашей планеты.

Сейчас наблюдается яркая тенденция в сторону отказа от использования и производства автомобилей с традиционными двигателями внутреннего сгорания. Все активнее используются гибриды и электротранспорт, но некоторые автоконцерны предлагают машины, способные работать и на альтернативных источниках энергии, например, водородные автомобили. Эксперты полагают, что именно они могут вытеснить с авторынка весь транспорт, который только существует сейчас.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Автомобиль на водородном топливе

Принцип работы водородных автомобилей

Как следует из названия, водородные автомобили в качестве источника топлива используют водород. Он взаимодействует с кислородом, вследствие чего образуется водяной пар. Из него уже выделяется энергия. Именно ее используют для электродвигателей или аккумуляторных батарей, от которых уже и происходит питание транспортного средства. Именно такой принцип используют производители, начавшие выпускать в серийное производство водородные автомобили.

Эта же технология позволяет создавать и двигатели внутреннего сгорания, которые могут работать на водороде по той же технологии, что и большинство современных машин, работающих на бензине.

Достоинства и недостатки водородных автомобилей

Как и любой источник энергии, водород имеет собственные плюсы и минусы. Однако, последних, в сравнении с привычными нефтепродуктами, гораздо меньше.

Плюсы водорода как альтернативного источника энергии

Главным достоинством транспортных средств, работающих на водороде, является отсутствие углекислого газа в качестве продукта переработки. Соответственно, такие авто не вносят свой вклад в загрязнение атмосферы и глобальное потепление.

Еще одно их достоинство — отсутствие шума при работе. Особенно это заметно в сравнении с машинами, оснащенными двигателями внутреннего сгорания.

Максимальный крутящий момент доступен с нулевой секунды запуска водородного элемента. Этого удается достичь за счет использования электродвигателя, который выдает весь свой потенциал сразу же, в отличии от бензинового или дизельного мотора, которому нужен предварительный разогрев.

Автомобиль на водородном топливе более эффективен, чем традиционные транспортные средства и даже электрокар. Сфера его использования куда шире. Так, на 1 грамм водорода выделяет в 3 раза больше энергии, чем при переработке такого же количества бензина. Соответственно, без дозаправки машина может работать несравнимо дольше, имея гораздо больший запас хода. Это же актуально и для электрокаров, которые даже менее производительны, чем бензиновые авто.

Заправка происходит быстрее, что тоже является ощутимым плюсом во время длительных поездок на значительные расстояния. И если бензиновый или дизельный автомобиль всегда можно заправить по пути следования, то электрические заправочные станции встречаются все еще слишком редко.

Минусы водородных автомобилей

Самый главный недостаток водородного топлива 0 сложность в его транспортировке и хранении. Чтобы обеспечить потребности автомобиля в энергии, придется сначала сжать водород в резервуаре под большим давлением. И на это нужна дополнительная энергия, а также высокопрочный резервуар, который выдержит давление в 700 бар.

К тому же, водородный двигатель для автомобиля использует не чистый водород, а водородный элемент, получение которого сопряжено с дополнительными тратами. В целом же, именно дороговизна всей системы и самого топлива ограничивает возможности для полной замены нефтепродуктов водородом.

Недостатки автомобилей на водороде. Смотреть фото Недостатки автомобилей на водороде. Смотреть картинку Недостатки автомобилей на водороде. Картинка про Недостатки автомобилей на водороде. Фото Недостатки автомобилей на водороде

Honda на водородном топливе

Виды водородного транспорта

Сейчас уже изобрели немало разновидностей транспортных средств, использующих в качестве топлива водород. И речь идет как о двигателях внутреннего сгорания на водороде, так и о моторах с водородными топливными элементами. Используются и газотурбинные двигатели на водороде. Встречаются машины разных типов, которые работают на смеси этого химического элемента и иных видов топлива.

Среди компаний, которые уже занялись серийным производством авто на водородном топливе, — Toyota, Honda и Hyundai. Отдельные модели есть в разработке Daimler, Audi, BMW, Ford, Nissan и ряда других крупных производителей. В ограниченном количестве ведется выпуск:

– двухтопливных легковых автомобилей BMW Hydrogen 7 и Mazda RX-8 Hydrogen RE, работающих на жидком водороде;

– электро-водородного гибридного легкового автомобиля Audi A7 h-tron quattro;

– автобуса с водородным двигателем Ford E-450;

– автобусов на водородном топливе MAN Truck & Bus.

В октябре 2019 года производитель Grove Hydrogen Automotive Co Ltd представил китайский водородный автомобиль, получивший запас хода в 1000 км. Машина будет доступна для заказа в любую точку мира уже с 2020 года, когда ее запустят в производство. И есть основания полагать, что промышленники задумаются о создании сети специализированных заправочных станций для водородных авто.

Но не только автопромом ограничивается фантазия изобретателей. В 2016 году немецкая компания Alstom представила водородный поезд, получивший название Coradia iLint. А для перелетов на максимально возможные расстояния Boeing Company занимается разработкой беспилотного самолета High Altitude Long Endurance, который снабдят двигателем HICE от Ford Motor Company.

Пока сложно сказать, заменит ли водородное топливо традиционное, сможет ли «обойти» электричество, но на сегодня водород является одним из достойнейших конкурентам бензину и дизелю. Если производители найдут возможность сделать его производство и хранение более дешевым, то будущее можно считать предопределенным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *