Ограничитель тока для светодиодов в авто
Стабилизатор НАПРЯЖЕНИЯ для светодиодов
Светодиод это полупроводниковый прибор достаточно нежный: при выходе за пределы номинальных значений практически любого из его параметров сокращается его жизнь или он выходит из строя. Основной и самый важный параметр светодиода это его номинальной рабочий ток. Если он ниже, то светодиод просто теряет в яркости до порога запирания, а вот если он больше номинального — то светодиод может выйти из строя.
В самом простом варианте для ограничения тока используют токоограничительные сопротивления — резисторы, но при работе от нестабильной по напряжению бортовой сети автомобиля добиться номинального тока через светодиод сложно. Если используется один или несколько светодиодов, то проблема решается просто подбором сопротивления под самое большое напряжение бортовой сети, а вот если их много… Для стабилизации в таких случаях многие применяют линейные стабилизаторы напряжения. Это один из вариантов стабилизации, помимо применение стабилизатора тока. И многие здесь делают ошибки.
У трехножечного стабилизатора есть основные условия нормальной работы: это падение напряжение между входом и выходом и ток. Если подключить 12-ти вольтовый стабилизатор, то нормально он работать не будет, ибо минимальное входное напряжение у него 14.5 Вольта. Получится только ограничитель напряжения при скачках напряжения на входе. Если например гена не заряжает аккум, то напряжение на выходе будет далеко не 12 Вольт.
Оптимальный здесь будет применения стабилизатора на 8 Вольт. У него минимальное напряжение на входе 10.5 Вольта, что перекрывает весь рабочий диапазон напряжений борт. сети.
Если применять стабилизаторы на меньшее напряжение, то пропорционально уменьшению напряжения стабилизации на выходе увеличивается количество выделяемого тепла стабилизатором, что накладывает ограничение по току нагрузки. Короче говоря чем больше разница между входом и выходом стабилизатора, тем он больше греется при одном и том же токе нагрузки.
Лучше всего подходят для стабилизации напряжения ШИМ — DC-DC преобразователи напряжения, которые имеют высокий КПД и выделяют очень мало тепла, соответсвенно позволяют подключать намного большие токи нагрузки, чем простые стабилизаторы. Примеры таких стабилизаторов есть у krasher а
Ещё лучше использовать не стабилизатор напряжения а стабилизатор тока. Хотя я считаю, что стабилизатор тока актуален только при подключении единичных мощных светодиодов — без него никуда, а для стабилизации гирлянд мелких светодиодов стабилизатор напряжения ни чем не уступает стабилизатору тока.
Простые линейные стабилизаторы тока для светодиодов своими руками
Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.
Стабилизаторы тока на транзисторах
Для стабилизации тока через светодиоды можно применить хорошо известные решения:
На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.
Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.
Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:
Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.
Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.
Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:
Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.
Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:
При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать
23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.
Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).
Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).
Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:
Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.
Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):
Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.
Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.
Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:
наименование | характеристики | цена |
---|---|---|
IRF9510 | P-channel, 100V, 4A | 209 руб. / 10 шт. |
IRF9Z34N | P-channel, 55V, 19A | 124 руб. / 10 шт. |
NDP6020P | P-channel, 20V, 24A | 120 руб. / 10 шт. |
Cree XM-L T6 | 10W, 3A | 135 руб. / шт. |
Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:
Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли». Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:
На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).
Пример самого простого драйвера тока для светодиода представлен ниже:
Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.
Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.
Стабилизаторы тока на микросхемах
Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).
TL431
Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:
Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что IRн = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.
А вот пример практического применения TL431 в светодиодной лампе:
На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.
Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.
Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.
Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:
наименование | характеристики | цена |
---|---|---|
SMD 2835 | LED, 3.3V, 0.15A, 0.5W | 67 руб. / 100 шт. |
2SC4544 | NPN, 300V, 0.1A | 10 руб. / шт. |
BD711 | NPN, 100V, 12A | 120 руб. / 10 шт. |
1N4007 | 1000V, 1A | 51 руб. / 100 шт. |
TL431A | 36V, 100mA | 87 руб. / 100 шт. |
Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.
С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.
Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.
Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.
Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):
название | характеристики | стоимость |
---|---|---|
SMD 5630 | LED, 3.3V, 0.15A, 0.5W | 240руб. / 1000шт. |
LM317 | 1.25-37V, >1.5A | 112руб. / 10шт. |
MB6S | 600V, 0.5A | 67руб. / 20шт. |
120μF, 400V | 18х30mm | 560руб. / 10шт. |
Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.
Вместо заключения
К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.
Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.
Решение проблемы перегорающих светодиодов. Стабилизация напряжения бортовой сети
Увы, бортовая сеть автомобилей B-класса редко подготовлена должным образом для светодиодного освещения. Изложенное ниже является еще одной возможной вариацией решения проблемы сгорающих светодиодных ламп.
Наверняка каждый автовладелец Hyundai Solaris если и не из личного опыта, то со слов других знаком с проблемой постоянно перегорающих светодиодных ламп. К сожалению, штатно нашему автомобилю не полагаются диодные лампы, а значит и бортовая сеть на них не рассчитана. Я лично столкнулся с этой проблемой после установки диодной подсветки заднего номера.
Суть проблемы
На рынке автоэлектрики уже довольно давно изобилуют светодиодные лампы самых разных мощностей под разные цоколи и цели, ассортимент постоянно расширяется, но, увы, это не сильно влияет на качество самих ламп и их адаптацию под автомобили с повышенным напряжением бортовой сети.
Основных причин, по которым светодиодные лампы сначала начинают мерцать, а потом и вовсе сгорают, три:
1. Некачественная пропайка контактов, что приводит к перегреву и выгоранию. Решить эту проблему можно самому подручными средствами (хотя зачастую перепаивание контактов оказывается лишь временной мерой) или просто искать более качественную продукцию от европейских производителей. Всё чаще на рынке встречаются светодиодные лампы с микроконтроллерами, стабилизирующими напряжение. Такие, например, я ставил себе в задний ход.
2. Повышенная температура окружающей среды. Высокая температура может быть вызвана особенностью расположение ламп в осветительном приборе и непосредственной близостью к источнику большого тепла, такого как, например, галогеновая лампа головного света или двигатель. Например, в нелинзованной фаре Hyundai Solaris габаритная лампа близко соседствует с бигалогеновой лампой головного света. При этом температура внутри фары вблизи лампы достигает 90 градусов, что губительно для диодов. Решением такой проблемы может стать только использование термостойких сравнительно дорогих COB-диодов или же термоизоляция от лампы головного света, что крайне сложно реализовать.
3. Повышенное напряжение бортовой сети. Как известно, чем свежее (новее) аккумулятор, тем выше на нём напряжение. На моём годовалом аккумуляторе напряжение 12,75 В, а при запущенном двигателе благодаря генератору оно возрастает аж до 14,55 В. На всех диодных лампах, подходящих нам, вполне четко указано рабочее напряжение 12 В. Увы, зачастую, это не просто рабочее напряжение, а максимально допустимое напряжение. Особенно для китайских и тайваньских ламп, производители которых в буквальном смысле выжимают все соки из несчастных светодиодов, работающих при 12 В на пределе своих возможностей. Ну, а как уже вы догадались, напряжение более 12 В приводит к избыточному току, который убивает светодиоды. Так, за месяц можно успеть поменять несколько ламп и снова обнаружить, что очередной светодиод начал мерцать. Как же быть? Решение именно этой проблемы я хочу осветить подробнее.
Решение
Проблема ясна, теперь о решении. Банально доставив нагрузку в бортовую сеть, тем самым понизив напряжение, мы получим сомнительный эффект, т.к. у светодиодов очень малый диапазон рабочего напряжения (амплитуда составляет в среднем 3-4 В). Таким образом, подобрать нагрузку так, чтобы лампы нормально светили как при запущенном двигателе, так и при заглушенном практически невозможно. В лучшем случае получится крайне тусклый свет при заглушенном и умеренно яркий при включенном, что неприемлемо, а значит нам нужна стабилизация. И в этом случае нам поможет микросхема со стабилизатором напряжения. Эту идею мне подкинул wattawaara, а так же помог с реализацией, за что ему огромное спасибо.
Для тестирования микросхемы я использовал COB-светодиодные лампы (2 Вт, 200 Люменов), заказанные на DealExtreme.
В микросхеме использовался проверенный годами отечественный стабилизатор КР142ЕН8Б, позволяющий стабилизировать напряжение до 12 В при входящем напряжении до 35 В. Обратите внимание, что для этого стабилизатора максимальный ток нагрузки не должен превышать 1.5 А. Кстати, при нагрузке более 1 А стабилизатор начинает существенно греться, а значит на минусовую петлю нужно вешать пассивный радиатор.
Использованные металлоплёночные конденсаторы К73-17 номиналами 0,1 и 0,33 мкФ служат фильтрами, сглаживающими кратковременные пики и шумы, а выпрямительный диод 1N5408 (да-да, он до 1000 В, уж что было под рукой) препятствует возможному обратному паразитному току. Собрать такую схему несложно, все элементы доступны в любом магазине радиоэлектронике. Я все компоненты нашёл в интернет-магазине Чип и Дип. Платой для сборки послужила самая обыкновенная пластина текстолита, найденная на работе. 😉
В моём случае распиновка следующая:
1 (желтый) – входящий «+»;
2 (черный) – входящий «–»;
3 (черный) – выходящий «–»;
4 (красный) – выходящий «+».
Для удобства установки/демонтажа использовался обыкновенный компьютерный разъем питания. Микросхема ставится последовательно в цепь перед конечным потребителем. Продублировал минус сознательно, чтобы при необходимости легко демонтировать всю плату, заменив её заглушкой.
Как видно на фото выше, нужный эффект достигнут – напряжение стабилизированно с 14,1 В до рабочих 11,89 В, что обеспечивает светодиодам продолжительный срок жизни и достаточный уровень яркости. Кстати, потребление этих COB-диодных ламп в сумме не превышает 100 мА при напряжении
12 В. На этом всё, спасибо за внимание!
P.S. Обновление от 02.02.2015
После комментария Дмитрия я всерьез обеспокоился вопросом нестабильности и стал тщательно проверять выходное напряжение. После нескольких часов тестирования могу с уверенностью сказать, что напряжение постоянное, не плавает. Более того, внимательно ознакомившись со спецификацией КР142ЕН8Б (подробнее тут и тут) не нашёл ни единого упоминания о нижнем пороге входного напряжения, меньше которого наблюдается нестабильная работа, есть только ограничение по входному напряжению не более 35 В. Единственный нюанс: при входном напряжении =12 В выходное получается менее 12 В (от 11,55 В до 11,95 В). Сводная таблица результатов тестирования ниже.
P.P.S. Обновление от 12.04.2015
Как оказалось, нет смысла заниматься самостоятельным изобретением плат стабилизации напряжения, всё уже давно сделано качественно и дёшево в Китае. Для стабилизации напряжения бортовой сети продается модуль LM2596 CL2122 (DC-DC конвертер). За счёт фильтров и возможности точной подстройки этот модуль можно считать однозначно лучше самоделки, о которой я писал выше.
Технические характеристики:
Допустимое входное напряжение: 4 В — 35 В;
Выходное напряжение: 1.23 В — 30 В;
Максимальный входной ток: 3 А (рекомендуется подключать потребителя на не более 2,5 А, иначе требуется дополнительное охлаждение);
Эффективность преобразования: 92% (наивысшая);
Частота переключения: 150 кГц;
Максимальная пульсация выходного сигнала: 30 мА (опять же лучше не допускать боле 25 мА);
Производитель: Leivin (Китай).
Как видно по фотографиям качество изготовления вполне приемлемое, достойная заводская пайка, а цена в два раза ниже (на момент покупки
60 р/шт), чем собирать самому плату из компонентов, купленных в розничном магазине радиодеталей. По точности стабилизации нареканий нет.
Сводная таблица результатов тестирования ниже.
Тест проводился следующим образом: подавалось входное напряжение 15 В, регулятор выходного напряжения выставлен так, чтобы выходное напряжение было точно 12 В. Далее с шагом 0,2 В входное напряжение постепенно понижалось до 12 В. Нагрузка была минимальная и обусловлена только сопротивлением мультиметра.
Как видно из сводной таблицы стабилизация заводского модуля куда плавнее и точнее самодельного, а значит рекомендован к внедрению в проводку автомобиля.
Удачи в освещении! Сделаем этот мир чуточку ярче! 😉
LM317 в стабилизаторе тока светодиодов. или как надежно запитать светодиоды чтобы горели и не сгорали.
Приветствую Вас друзья мои!
Так как имеются некоторые мысли по поводу led-тюнинга, то юзаю инет в этом направлении.Попалась хорошая статья, и чтоб всегда был доступ к инфо, скопипастил себе в блог.А то закладки и т.д. не всегда под рукой.Да простит меня автор сего мемуара, взятого отсюда.
Итак, начнем-с: LM317 и светодиоды
Долговечность светодиодов определяется качеством изготовления кристалла, а для белых светодиодов еще и качествомled люминофора. В процессе эксплуатации скорость деградации кристалла зависит от рабочей температуры. Если предотвратить перегрев кристалла, то срок службы может быть очень велик до 10 и более лет.
Отчего может быть вызван перегрев кристалла? Он может быть вызван только чрезмерным увеличением тока. Даже короткие импульсы тока перегрузки сокращают срок жизни светодиода, например, если в первый момент, после скачка тока визуально это воздействие не заметно и кажется, что светодиод не пострадал.
Повышение тока может быть вызвано нестабильностью напряжения или электромагнитными (электростатическими) наводками на цепи питания светодиода.
Дело в том, что главным параметром для долговечности светодиода является не напряжение его питания, а ток, который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1,8 до 2,6 V, белые от 3,0 до 3,7 V. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые – классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току, например, в 2 раза живут … 2-3 часов! Так что, если Вы желаете, чтобы светодиод горел и не сгорел в течение хотя бы 5 лет надо позаботиться о его питании.
Если мы устанавливаем светодиоды в цепочку (последовательное соединение) или подключаем параллельно, то добиться одинаковой светимости можно только если протекающий ток через них будет одинаков.
Также опасно для светодиодов высокое обратное напряжение. У светодиодов обычно порог обратного напряжения не превышает 5-6 V. Для зашиты светодиода от импульсов обратного напряжения рекомендуется устанавливать выпрямительный диод в обратном направлении.
Как построить своими руками самый простой стабилизатор тока? И желательно из недорогих комплектующих.
Обратим внимание на стабилизатор напряжения LM317, который легко превратить в стабилизатор тока при помощи только одного резистора, если нужно стабилизировать ток в пределах до 1 A или LM317L, если необходима стабилизация тока до 0,1 А.
Так выглядят стабилизаторы LM317 с рабочим током до 3 А.
Так выглядят стабилизаторы LM317L с рабочим током до 100 мА.
На Vin (input) подается напряжение, с Vout (output) – снимается напряжение, а Adjust — вход регулировки. Таким образом, LM317 — стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 V (если Adjust “посадить” прямо на землю) и максимальное – до входного напряжения минус 1,25 V. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.
Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!
Схема включения выглядит следующим образом:
По формуле внизу рисунка очень просто рассчитать величину сопротивления резистора для необходимого тока. Т.е сопротивление резистора равно – 1,25 деленное на требуемый ток. Для стабилизаторов до 0,1 A подходит мощность резистора 0,25 W. На токи от 350 мА до 1 А рекомендуется 2 W. Ниже привожу таблицу резисторов на токи для широко распространенных светодиодов.
Вот пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг…).
Включить последовательно можно только 3 светодиода – 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.
Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле – это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.
P.S. Подбирайте количество светодиодов так, чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это необходимо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребуется радиатор.
Вот и все!
Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод в автомобиле обязателен! Рекомендую его ставить даже, если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.
Краткое описание к схеме рис.1
Количество светодиодов в цепочке надо выбирать с учетом вашего рабочего напряжения минус падение напряжения на стабилизаторе и минус на диоде.
Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание, что 20 мА – это рабочий ток для ФИРМЕННЫХ дорогих светодиодов! Только фирма гарантирует такой ток. Если вы не знаете точного происхождения, то выбирайте ток в пределах 14-15 мА. Это для того, что бы потом не удивляться, почему так быстро упала яркость или, вообще, почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому что к нам завозят не всегда то, что маркировано на изделии.
Вопрос 1: Сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 V. Падение на диоде 0,6 V. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 V. Для автомобиля минимальное напряжение в сети 12,6 – это нормально.
Для белых светодиодов на 20 мА можно включать 3 шт, для сети 12,6 V. Учитывая, что при включенном двигателе нормальное рабочее напряжение сети 13,6 V (это номинальное, в других вариантах может быть и выше!), а рабочее LM317 до 37 V
Вопрос 2 :Как рассчитать сопротивление резистора задающего ток! Хотя выше и было описано, вопрос задают постоянно.
где R1 — сопротивление токозадающего резистора в Омах.
1,25 – опорное (минимальное напряжение стабилизации) LM317
Ist — ток стабилизации в Амперах.
Нам нужен ток в 20 мА – переводим в амперы = 0,02 А.
Вычисляем R1 = 1,25 / 0,02 = 62,5 Ом. Принимаем ближайшее значение 62 Ома.
Еще пару слов о групповом включении светодиодов.
Идеально – это последовательное включение со стабилизацией тока.
Светодиоды – это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов, то необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают вмонтируя в изделие защитный диод).
если необходимо подключить массив из светодиодов, то рекомендую такую схему включения.
Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.
Как рассчитать значение гасящего резистора для светодиода? Расчет проводиться по закону Ома.
Ток в цепи равен напряжению делённому на сопротивление цепи.
I led = V pit / на сопротивление диода и резистора.
Сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падение напряжения на светодиоде.
Для маломощных светодиодов с током 20 мАм необходимо принимать:
Зная падение напряжения на светодиоде можно вычислить остаток – напряжение на резисторе.
Например, питающее напряжение V pit = 9 V. Мы подключаем 1 белый светодиод, падение на нем 3,1 V. Напряжение на резисторе будет = 9 – 3,1 = 5,9 V.
Вычисляем сопротивление резистора:
R1 = 5.9 / 0.02 = 295 Ом.
Берем резистор с близким более высоким сопротивлением 300 ом.
PS. Не всегда характеристики на рабочий ток светодиода соответствуют истине, это актуально особенно для светодиодов изготовленных “не знаю где”, для светодиодов (любых) надо большое внимание уделить отводу тепла, а так как это условие не всегда выполнимо, то по этому рекомендую для “20 мА” светодиодов выбирать ток в районе 13-15 мА. Если это SMD на 50 мА, нагружать током 25-30 мА. Эта рекомендация особенно актуальна для светодиодов с рабочим напряжением в районе 3,0 вольт (белые, синие и истинно зеленые) и светодиодов в SMD исполнении. Т.е. не задавайте максимальный ток по описанию, сделаете его на 10-25% меньше, срок службы будет в 10 дольше :)…