Принцип действия машины постоянного тока кратко

Электрические машины постоянного тока: виды и принцип их работы

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока краткоМашины постоянного тока представляют собой возвратную электрическую машину, в которых происходит процесс преобразования энергии. В машинах, где механическая энергия преобразуется в электрическую, называются генераторами. Они предназначены для выработки электроэнергии. Для работы необходимо наличие какого-либо двигателя (дизеля, паровой или водяной турбины), который будет вращать вал генератора.

Обратное преобразование энергий происходит в электродвигателях. Они приводят в движение колесные пары локомотивов, вращают валы вентиляторов и т.д. Для работы необходимо подсоединение электродвигателя с источником электроэнергии посредством проводов.

Принцип работы электрических машин постоянного тока основан на использовании явления электромагнитной индукции, а также законов, которые определяют взаимодействие электрических токов и магнитных полей.

Эти машины включают в себя неподвижную и вращающуюся части. В конструкцию неподвижной части, или статора входят станина, главные и дополнительные полюса, подшипниковые щиты и щеточная траверса с графитовыми или медно-графитовыми щетками.

Вращающаяся часть, или ротор, в электрических машинах постоянного тока именуются якорем. Якорь, снабженный коллектором, в электродвигателях играет роль преобразователя частоты, а в генераторах – выпрямителя.

При вращении машины происходит перемещение якоря и статора относительно друг друга. Статор создает магнитное поле, а в обмотке якоря индуцируется э. д. с. Возникает ток, который при воздействии с магнитным полем создает электромагнитные силы, отвечающие за процесс преобразования энергии.

Электрические машины постоянного тока в зависимости от наличия или отсутствия коммутации бывают обычными и униполярными, а по расположению вала — вертикальными и горизонтальными.

По типу переключателей тока их можно подразделить на машины с щеточно-коллекторным и электронным переключателем. Последние называются еще вентильными электродвигателями.

По мощности они делятся на микромашины мощностью до 0,5 кВт, а также, машины малой, средней и большой мощности — 0,5-10 кВт, 10-200 кВт и более 200 кВт соответственно.

По частоте вращения различают тихоходные (до 300 об/мин), средней быстроходности (300-500 об/мин), быстроходные (1500-6000 об/мин) и сверхбыстроходные (более 6000 об/мин) электрические машины постоянного тока.

Источник

Электрические машины постоянного тока: устройство и принцип действия

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

Устройство машины постоянного тока при первом знакомстве кажется сложным. Но если понять происходящие внутри процессы, ситуация существенно прояснится.

Машины постоянного тока: что это?

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока краткоПрименение электрического тока в основном заключается в превращении его в иные виды энергии, в частности, механическую. Также и механическая энергия может быть превращена в электрическую.

Этими преобразованиями занимаются машины постоянного и переменного тока. У первых в обмотку возбуждения подается постоянный ток.

Машины постоянного тока (МПТ), преобразующие механическую энергию в электричество, называются генераторами. Выполняющие обратное преобразование — двигателями.

Устройство

МПТ состоят из двух частей:

В машинах переменного тока индуктор и якорь принято называть, соответственно, статором и ротором. Индуктор создает первичное магнитное поле, воздействующее на якорь с целью навести в нем ЭДС (генератор) либо заставить его вращаться (двигатель).

В маломощных МПТ индуктором иногда выступает постоянный магнит, но чаще с целью добиться однородного магнитного потока применяют электромагнит, то есть систему катушек, создающих при протекании через них постоянного тока магнитное поле обмотка возбуждения (ОВ).

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

Устройство машины постоянного тока

Каждая катушка намотана на сердечник, вместе они образуют магнитный полюс. Для надлежащего распределения магнитного потока сердечник снабжен специальным наконечником. Основных полюсов может быть несколько. Помимо них применяются добавочные, обеспечивающие безыскровую работу коллектора. Последний представляет собой важный элемент МПТ, его функция будет рассмотрена ниже.

Ярмо индуктора одновременно является станиной МПТ, потому его так обычно и называют. К нему крепятся магнитные полюсы и подшипниковые щиты (вращается вал якоря). В сущности, ярмо — это лишь часть станины, по которой замыкаются магнитные потоки основных и добавочных полюсов.

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока краткоЯкорь представляет собой сердечник с пазами, содержащими уложенный в определенном порядке провод — обмотку. Сердечник закреплен на валу, вращающемся в подшипниках. Здесь же закреплен коллектор.

Коллектор обеспечивает возможность подачи питания на обмотку вращающегося якоря. Он является подвижной частью так называемого скользящего коллекторного контакта, и состоит из нескольких изолированных друг от друга сегментообразных медных пластин, закрепленных в виде цилиндра на валу якоря. Неподвижная часть контакта представлена графитовыми или медно-графитовыми щетками, закрепленными в щеткодержателях. Пружинами они придавливаются к пластинам коллектора.

Принцип действия

Особенности функционирования МПТ зависит от того, в каком режиме она работает — генератора или двигателя. Далее подробно рассматриваются оба варианта.

Генератор

Принцип работы генератора постоянного тока основан на явлении электромагнитной индукции. Состоит оно в том, что при изменении магнитного потока, пересекающего проводник, в последнем наводится ЭДС.

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

Принцип действия генератора постоянного тока

Чтобы добиться изменения магнитного потока, меняют параметры поля либо двигают в постоянном поле проводник. По второму варианту и работает генератор постоянного тока: обмотка якоря приводится во вращение внешней механической силой.

Очевидно, что после поворота витков обмотки на 180 градусов ЭДС окажется направленной противоположно. Сохранить ток в подключенной к генератору цепи постоянным, то есть однонаправленным, помогает коллектор: в нужный момент он переподключает концы обмотки якоря к противоположным контактам цепи (щеткам). То есть в этой машине коллектор играет роль механического выпрямителя.

Двигатель

Работа МПТ в режиме двигателя обусловлена возникновением так называемой амперовой силы. Она действует на помещенный в магнитное поле проводник при протекании по нему тока. Направление амперовой силы определяется по правилу левой руки.

Сила Ампера появляется благодаря следующему механизму:

Как и в случае с генератором, после поворота витка обмотки якоря в определенное положение, требуется переключение контактов для изменения в ней направления тока либо полярности индуктора. Поэтому в режиме двигателя коллектор также необходим.

У коллекторных двигателей есть преимущества:

Недостаток — низкая надежность коллектора и его сложность, негативно отражающаяся на стоимости двигателя.

Вот какими нежелательными явлениями сопровождается работа узла:

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

В целях борьбы с недостатками в некоторых современных двигателях постоянного тока (ДПТ) применены следующие решения:

Такие двигатели называют бесколлекторными, за рубежом — BLDC-двигателями.

Классификация МПТ по способу питания обмоток индуктора и якоря

По данному признаку МПТ делятся на 4 вида.

С независимым возбуждением

Обмотки индуктора и якоря не имеют электрического соединения. У генераторов этого типа обмотку возбуждения питает сеть постоянного тока, аккумулятор или специально предназначенный для этого генератор — возбудитель. Мощность последнего — несколько сотых мощности основного генератора.

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока краткоОбласть применения генераторов с независимым возбуждением:

У двигателей с независимым возбуждением запитана и якорная обмотка. В основном это также агрегаты большой мощности.

Независимость обмотки индуктора позволяет удобнее и экономичнее регулировать ток возбуждения. Еще одна особенность таких моторов — постоянство магнитного потока возбуждения при любой нагрузке на валу.

С параллельным возбуждением

Обмотки индуктора и якоря соединены в одну цепь параллельно друг другу. Генераторы этого типа обычно применяются для средних мощностей. При параллельном соединении генерируемое устройством напряжение подается на обмотку возбуждения. При соединении в одну цепь обмоток индуктора и якоря говорят о генераторе с самовозбуждением.

По своим характеристикам они идентичны моторам с независимым возбуждением и обладают следующими особенностями:

Индуктор вращающегося двигателя с параллельным возбуждением нельзя отсоединять от цепи якоря, даже если он уже отключен. Это приведет к наведению значительной ЭДС в обмотке возбуждения с последующим выходом мотора из строя. Находящийся рядом персонал может получить травму.

С последовательным возбуждением

Обмотки соединены в цепь последовательно друг другу. Через обмотку возбуждения течет ток якоря. Генераторы этого типа почти не применяются, поскольку процесс самовозбуждения происходит достаточно бурно и устройство не способно обеспечить необходимое большинству потребителей постоянство напряжения. Их используют только в специальных установках.

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

Схема последовательного возбуждения

Двигатели этого типа широко применяют в качестве тяговых (электровозы, троллейбусы, краны и пр.): по сравнению с аналогами параллельного возбуждения, при нагрузке они дают более высокий момент с одновременным уменьшением скорости вращения. Пусковой момент также высок.

С параллельно-последовательным (смешанным) возбуждением

Существует два вида схемы:

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

Схемы систем возбуждения МПТ

Подключение параллельной обмотки до последовательной называют «коротким шунтом», за последовательной — «длинным шунтом». Генераторы этого типа применяются крайне редко.

Двигатели сочетают в себе достоинства аналогов с параллельным и последовательным возбуждением: способны работать на холостом ходу и при этом развивают значительное тяговое усилие. Но и они сегодня почти не применяются.

Видео по теме

Об устройстве и принципе работы двигателя постоянного тока в видео:

Несмотря на преобладание тока переменного, машины постоянного тока остаются востребованными. Это объясняется их экономичностью, простотой регулировки и рядом прочих достоинств. Коллекторные двигатели, в сущности, универсальны, поскольку могут работать и на переменном токе (направление тока в обмотках все время совпадает).

Источник

Принцип действия машин постоянного тока

Принцип действия машин постоянного тока.

Принцип действия генератора. Простейший генератор можно представить в виде витка, вращающегося в магнитном поле (рис. 1.4, а, б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.

Принцип работы генератора основан на явлении электромагнитной индукции. Пусть виток приводится во вращение от внешнего приводного двигателя ПД. Проводники активной части витка пересекают магнитное поле и в них по закону электромагнитной индукции наводятся ЭДС e1 и e2, направление которых определяется по правилу правой руки. При вращении витка по направлению движения часовой стрелки в верхнем проводнике, находящемся под северным полюсом, ЭДС направлена от нас, а в нижнем, находящемся под южным полюсом, – к нам. По ходу витка ЭДС складываются, результирующая ЭДС е = е1 – е2.

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока краткоЕсли внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него – к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя – отрицательным. При повороте витка на 180° проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменяется на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя – с верхней, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т. е. являются простейшим механическим выпрямителем.

Принцип действия двигателя. То же устройство работает в режиме электрического двигателя (рис. 1.5), если к щеткам подвести постоянное напряжение. Под дей­ствием напряжения U через щетки, пластины коллектора и виток потечет ток i. По закону электромагнитной силы (закон Ампера) взаимодействие тока и магнитного поля В создает силу f, которая направлена перпендикулярно i. Направление силы f определяется правилом левой руки (рис. 1.5): на верхний проводник сила действует вправо, на нижний – влево. Эта пара сил создает вращающий момент Мвр, поворачивающий виток по часовой стрелке. При переходе верхнего проводника в зону южного полюса, а нижнего – в зону северного полюса концы проводников и соединенные с ними коллекторные пластины вступают в контакт со щетками другой полярности.

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

Направление тока в проводниках витка изменяется на проти­воположное, а направление сил f, момента Мвр и тока во внешней цепи не изменяется. Виток непрерывно будет вращаться в магнитном поле и может приводить во вращение вал рабочего механизма (РМ).

Таким образом, коллектор в режиме двигателя не только обеспечивает контакт внешней цепи с витком, но и выполняет функцию механического инвертора, т.е. преобразует постоянный ток во внешней цепи в переменный ток в витке.

Рассмотрение принципа действия показывает, что машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя, т. е. обладает свойством обратимости.

Противодействующий момент и противо-ЭДС. При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток, направление которого совпадает с направлением ЭДС (рис. 1.4,6), взаимодействие тока с магнитным полем полюсов создает момент М, направленный в рассматриваемом случае против часовой стрелки. Так как приложенный к витку вращающий момент приводного двигателя Мвр направлен по часовой стрелке, то возникающий при работе генератора момент называется противодействующим моментом Мnp. По существу возникновение Мпр — это реакция машины на воздействие внешнего момента Мвр, а физическая природа противодействующего момента та же, что и вращающего момента у двигателя. В установившемся режиме работы генератора между Мвр и Мпр устанавливается равновесие и Мвр=Мпр.

При работе машины в режиме двигателя проводники якоря пересекают магнитное поле и в них наводится ЭДС (рис. 1.5,б). Ее направление определяется по правилу правой руки. В рассматриваемом случае она направлена против тока и, следовательно, навстречу приложенному напряжению сети U и поэтому называется противо-ЭДС Enp. Физическая природа противо-ЭДС та же, что и ЭДС генератора. В установившемся режиме работы двигателя между Enp и U устанавливается равновесие и можно считать, что EnpU .

Таким образом, при работе машины постоянного тока в любом режиме во вращающихся проводниках наводится ЭДС Е и возникает момент М, но роль их в разных режимах различная.

Источник

Машины постоянного тока устройство и принцип действия

В статье рассмотрено устройство простейшей машины постоянного тока, описан ее принцип действия. Дано определение принципа обратимости электрических машин и электромагнитной мощности.

Устройство простейшей машины

На рисунке 1 представлена простейшая машина постоянного тока, а на рисунке 2 дано схематическое изображение этой машины в осевом направлении. Неподвижная часть машины, называемая индуктором, состоит из полюсов и стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в машине основного магнитного потока. Индуктор изображенной на рисунке 1 простейшей машины имеет два полюса 1 (ярмо индуктора на рисунке 1 не показано).

Вращающаяся часть машины состоит из укрепленных на валу цилиндрического якоря 2 и коллектора 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанной на рисунке 1 и рисунке 2 простейшей машине имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор наложены две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.

Основной магнитный поток в нормальных машинах постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.

Режим генератора

Рассмотрим сначала работу машины в режиме генератора.

Рисунок 2. Работа простейшей машины постоянного тока в режиме генератора (а) и двигателя (б)

Предположим, что якорь машины (рисунки 1 и 2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется э. д. с., направление которой может быть определено по правилу правой руки (рисунок 3, а) и показано на рисунках 1 и 2, а. Поскольку поток полюсов предполагается неизменным, то эта э. д. с. индуктируется только вследствие вращения якоря и называется э. д. с. вращения.

Рисунок 3. Правила правой (а) и левой (б) руки

Значения индуктируемой в проводнике обмотки якоря э. д. с.

где B – магнитная индукция в воздушном зазоре между полюсом и якорем в месте расположения проводника; l – активная длина проводника, то есть та длина, на протяжении которой он расположен в магнитном поле; v – линейная скорость движения проводника.

В обоих проводниках вследствие симметрии индуктируются одинаковые э. д. с., которые по контуру витка складываются, и поэтому полная э. д. с. якоря рассматриваемой машины

Рисунок 1. Простейшая машина постоянного тока
Eа = 2 × eпр = 2 × B × l × v.(1)

Э. д. с. Eа является переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление э. д. с. в проводниках меняется. По форме кривая э. д. с. проводника в зависимости от времени t повторяет кривую распределения индукции B вдоль воздушного зазора (рисунок 4, а).

Частота э. д. с. f в двухполюсной машине равна скорости вращения якоря n, выраженной в оборотах в секунду:

а в общем случае, когда машина имеет p пар полюсов с чередующейся полярностью,

Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток Iа. В обмотке якоря этот ток будет переменным, и кривая его по форме аналогична кривой э. д. с. (рисунок 4, а). Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора (рисунок 1) на 90° и изменении направления э. д. с. в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой – пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными.

Рисунок 4. Кривые э. д. с. и тока простейшей машины в якоре (а) и во внешней цепи (б)

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Изменив знак второго полупериода кривой на рисунке 4, а, получим форму кривой тока и напряжения внешней цепи (рисунок 4, б). Образуемый во внешней цепи пульсирующий по значению ток малопригоден для практических целей. Для получения практически свободных от пульсаций тока и напряжения применяют более сложные по устройству обмотку якоря и коллектор. Однако основные свойства машины постоянного тока могут быть установлены на примере рассматриваемой здесь простейшей машины.

Напряжение постоянного тока на зажимах якоря генератора будет меньше Eа на величину падения напряжения в сопротивлении обмотки якоря rа:

Проводники обмотки якоря Iа с током находятся в магнитном поле, и поэтому на них будут действовать электромагнитные силы (рисунок 2, а)

Mэм = Fпр × Dа = B × l × Dа × Iа,(5)

где Dа – диаметр якоря. Как видно из рисунка 2, а, в режиме генератора этот момент действует против направления вращения якоря и является тормозящим.

Режим двигателя

Рассматриваемая простейшая машина может работать также двигателем, если обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы Fпр и возникнет электромагнитный момент Mэм. Величины Fпр и Mэм, как и для генератора, определяются равенствами (4) и (5). При достаточном значении Mэм якорь машины придет во вращение и будет развивать механическую мощность. Момент Mэм при этом является движущим и действует в направлении вращения.

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве инвертора тока.

Проводники обмотки якоря двигателя также вращаются в магнитном поле, и поэтому в обмотке якоря двигателя тоже индуктируется э. д. с. Eа, значение которой определяется равенством (1).

Направление этой э. д. с. в двигателе (рисунок 2, б) такое же, как и в генераторе (рисунок 2, а). Таким образом, в двигателе э. д. с. якоря Eа направлена против тока Iа и приложенного к зажимам якоря напряжения Uа. Поэтому э. д. с. якоря двигателя называется также противоэлектродвижущей силой.

Приложенное к якорю двигателя напряжение уравновешивается э. д. с. Eа и падением напряжения в обмотке якоря:

Из сравнения равенств (3) и (6) видно, что в генераторе Uа Eа.

Принцип обратимости

Из изложенного выше следует, что каждая машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.

Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.

Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.

Аналогичным образом может происходить изменение режима работы также в машинах переменного тока.

Преобразование энергии

На рисунке 5 показаны направления действия механических и электрических величин в якоре генератора и двигателя постоянного тока.

Рисунок 5. Направление э. д. с., тока и моментов в генераторе (а) и двигателе (б) постоянного тока

Согласно первому закону Ньютона в применении к вращающемуся телу, действующие на это тело движущие и тормозные вращающие моменты уравновешивают друг друга. Поэтому в генераторе при установившемся режиме работы электромагнитный момент

где Mв – момент на валу генератора, развиваемый первичным двигателем, Mтр – момент сил трения в подшипниках, о воздух и на коллекторе электрической машины, Mс – тормозной момент, вызываемый потерями на гистерезис и вихревые токи в сердечнике якоря. Эти потери мощности появляются в результате вращения сердечника якоря в неподвижном магнитном поле полюсов. Возникающие при этом электромагнитные силы оказывают на якорь тормозящее действие и в этом отношении проявляют себя подобно силам трения.

В двигателе при установившемся режиме работы

Mэм = Mв + Mтр + Mс,(7б)

где Mв – тормозной момент на валу двигателя, развиваемый рабочей машиной (станок, насос и т. п.).

В генераторе Mэм является тормозным, а в двигателе – вращающим моментом, причем в обоих случаях Mв и Mэм противоположны по направлению.

Развиваемая электромагнитным моментом Mэм мощность Pэм называется электромагнитной мощностью и равна

представляет собой угловую скорость вращения.

Подставим в выражение (8) значение Mэм и Ω из равенств (5) и (9) и учтем, что линейная скорость на окружности якоря

Принцип действия машины постоянного тока кратко. Смотреть фото Принцип действия машины постоянного тока кратко. Смотреть картинку Принцип действия машины постоянного тока кратко. Картинка про Принцип действия машины постоянного тока кратко. Фото Принцип действия машины постоянного тока кратко

или на основании выражения (1)

В обмотке якоря под действием э. д. с. Eа и тока Iа развивается внутренняя электрическая мощность якоря

Согласно равенствам (10) и (11), Pэм = Pа, т. е. внутренняя электрическая мощность якоря равна электромагнитной мощности, развиваемой электромагнитным моментом, что отражает процесс преобразования механической энергии в электрическую в генераторе и обратный процесс в двигателе.

Умножим соотношения (3) и (6) на Iа. Тогда для генератора будем иметь

Pэм = 2 × B × l × Dа × Iа × π × n = 2 × B × l × v × Iа
Uа × Iа = Eа × IаIа 2 × rа(12)
Uа × Iа = Eа × Iа + Iа 2 × rа.(13)

Левые части этих выражений представляют собой электрические мощности на зажимах якоря, первые члены правых частей – электромагнитную мощность якоря и последние члены – электрические потери мощности в якоре.

Хотя приведенные соотношения получены для простейшей машины постоянного тока (рисунок 1), они действительны и в общем случае при более сложной обмотке якоря, так как э. д. с. и моменты отдельных проводников складываются. Эти соотношения являются выражением закона сохранения энергии и отражают процесс преобразования энергии в машине постоянного тока.

Согласно им, механическая мощность, развиваемая на валу генератора первичным двигателем, за вычетом механических и магнитных потерь, превращается в электрическую мощность в обмотке якоря, а электрическая мощность за вычетом потерь в этой обмотке выдается во внешнюю цепь. В двигателе электрическая мощность, подводимая к якорю из внешней цепи, частично расходуется на потери в обмотке якоря, а остальная часть этой мощности превращается в мощность электромагнитного поля и последняя – в механическую мощность, которая за вычетом потерь на трение и потерь в стали якоря передается рабочей машине.

Установленные выше применимо к машине постоянного тока общие закономерности превращения энергии в равной степени относятся также к машинам переменного тока.

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *