Принцип работы катушки зажигания мотоцикла
МОЙ МОТОЦИКЛ
Прежде чем говорить об устройстве, необходимо четко уяснить, какие требования предъявляются к системе зажигания и как они ею выполняются.
Рассуждая логически, нетрудно понять, что требований этих всего два.
Во-первых, искра в цилиндре двигателя должна быть достаточно мощной, способной воспламенить сжатую рабочую смесь.
Во-вторых, она должна возникать в строго определенный момент времени.
Представьте себе цилиндр, в котором на ничтожную долю секунды все «замерло» в ожидании Ее Величества Искры. Чуть-чуть раньше или мгновением позже появится Она — двигатель еще или уже не сможет выдать всего, на что он способен.
Остановимся на этих требованиях подробнее.
Качество искры (выделяемая в ней энергия) зависит от величины напряжения, развиваемого системой зажигания. Оно снимается со вторичной обмотки катушки зажигания, и величина его для каждого двигателя должна быть не ниже некоторого уровня, определяемого в основном пробивным напряжением между электродами свечи зажигания.
Пробивное напряжение, в свою очередь, прямо пропорционально зазору в свече зажигания, давлению в цилиндре в момент пробоя искрового промежутка и обратно пропорционально температуре. Давление и температура меняются в зависимости от режима работы двигателя. Как правило, пробивное напряжение имеет наибольшую величину при пуске холодного двигателя из-за низкой температуры в цилиндре. По мере прогрева двигателя пробивное напряжение уменьшается. Кроме того, с ростом частоты вращения коленчатого вала уменьшается время для отвода тепла в стенки камеры сгорания и цилиндра, и средняя температура в цилиндре растет, что приводит к еще большему снижению пробивного напряжения. Последняя зависимость иллюстрируется графиком, представленным на рис. 1.
В процессе работы свечи зажигания происходит электроэрозионный износ ее электродов — зазор между ними увеличивается. Для образования искры к электродам нужно прикладывать все большее и большее напряжение. Если свечу вовремя не заменить на новую или не подрегулировать зазор, может наступить такой момент, когда пробивное напряжение возрастет настолько, что система зажигания будет не в состоянии его обеспечить. Понятно, что в этом случае искра не «проскочит».
Итак, мы выяснили, отчего зависит величина пробивного напряжения. Для надежного воспламенения рабочей смеси напряжение, развиваемое системой зажигания, должно превышать пробивное не менее чем в полтора раза на всех режимах работы двигателя. При этом надо учитывать, что напряжение во вторичной цепи системы зажигания зависит от параметров самой этой цепи. Каких же? В первую очередь от ее емкости и шунтирующей нагрузки.
Рассмотрим и их по порядку.
Цепь высокого напряжения включает в себя вторичную обмотку катушки зажигания, высоковольтный провод, свечной наконечник и свечу. Замыкается цепь через «массу» мотоцикла.
Известно, что два проводника, разделенные диэлектриком (например, воздушным промежутком), представляют собой простейший конденсатор, имеющий некоторую емкость. Другими словами, любая электрическая цепь обладает какой-то емкостью. Высоковольтная цепь системы зажигания — не исключение, и каждый ее элемент можно рассматривать как одну обкладку конденсатора. Другой же обкладкой является «масса» мотоцикла. Между ними существует емкость Сп. Но если емкости катушки зажигания Ci, свечного наконечника С3, свечи зажигания С, — величины постоянные, зависящие только от их конструктивного исполнения, то емкость высоковольтного провода С2 зависит от его длины. Поэтому для снижения общей емкости цепи высоковольтный провод необходимо делать как можно более коротким.
Наличие емкости между элементами высоковольтной цепи и «массой» (на самом-то деле никаких «конденсаторов», конечно, нет) условно показано на рис. 2.
В этом заключаются основные принципы роботы систем зажигания мотоциклов в общем!!…..
Система зажигания
Системы зажигания служат для воспламенения горючей смеси в цилиндре в конце такта сжатия. Во всех мотоциклетных двигателях топливовоздушная смесь воспламеняется за счет электрической искры, возникающей между электродами свечи зажигания при напряжении 15–30 тыс. В.
Существуют системы зажигания контактного и бесконтактного типов, они могут работать как с аккумуляторной батареей, так и без нее.
Контактные системы зажигания. До конца 80-х годов прошлого века на бензиновых ДВС применяли так называемую батарейную систему зажигания, в которую входят контактный прерыватель, катушка зажигания и свечи зажигания.
Схема батарейной системы зажигания:
1 — аккумуляторная батарея;
2 — замок зажигания;
3 — катушка зажигания;
4 — первичная обмотка;
5 — вторичная (высоковольтная) обмотка;
6 — свеча зажигания;
7 — вращающийся кулачок;
8 — контакты прерывателя;
Контактный прерыватель, состоящий из подвижного и неподвижного контактов, задает момент образования искры.
Контактный прерыватель («Иж-Юпитер-5»)
1 — верхнее основание (левый цилиндр);
2 — токоподводящая пружина;
3 — подвижный контакт (молоточек) цепи зажигания левого цилиндра;
4 — текстолитовая подушка молоточка;
5 — неподвижный контакт (наковальня);
6 — нижнее основание (правый цилиндр);
7 — эксцентрик регулировки зазора между контактами;
8 — винт фиксации регулировки зазора;
9 — контактная группа цепи зажигания правого цилиндра;
10 — смазочный фильц;
12 — паз регулировки опережения зажигания левого цилиндра;
13 — паз регулировки опережения зажигания правого цилиндра
Подвижный контакт размещен на изолированном от корпуса рычажке (молоточке), который приводится в движение кулачком, вращающимся синхронно с коленчатым валом двигателя. В двухтактных двигателях искра должна возникать один раз за один оборот коленчатого вала, поэтому прерыватель системы зажигания размещают непосредственно на цапфе коленчатого вала. В четырехтактных двигателях воспламенение смеси происходит один раз за два оборота, поэтому прерыватель размещают на конце распределительного вала, вращающегося в два раза медленнее коленчатого.
Неподвижный контакт закреплен на основании (наковальне), соединенном с «массой». В заданный момент кулачок своим выступом поднимает подвижный контакт, разрывая тем самым цепь первичной обмотки катушки зажигания. В этот момент из-за быстрого изменения напряженности магнитного поля во вторичной обмотке катушки наводится (индуцируется) ток высокого напряжения. Конденсатор, включенный параллельно контактам, уменьшает искрообразование на них и, следовательно, обгорание контактов.
В двухцилиндровых двухтактных двигателях каждый цилиндр имеет свою цепь зажигания. В двухцилиндровых четырехтактных двигателях один кулачок обслуживает двухискровую катушку зажигания. В них искра проскакивает во время одного цикла в каждом цилиндре дважды: около ВМТ — в установленный момент искрообразования и около НМТ — во время такта выпуска, когда она не влияет на рабочий процесс. В некоторых четырехтактных двигателях с двумя и более цилиндрами используют распределитель зажигания автомобильного типа с одной катушкой.
Схема батарейной системы зажигания с двухискровой катушкой зажигания («Урал», «Днепр»)
1 — аккумуляторная батарея;
2 — замок зажигания;
3 — двухискровая катушка зажигания;
4 — первичная обмотка;
5 — вторичная (высоковольтная) обмотка;
7 — контакты прерывателя;
9 — свечи зажигания
Катушка зажигания представляет собой трансформатор. Она преобразует ток низкого напряжения, поступающий к ее первичной обмотке от аккумуляторной батареи (или альтернатора, работающего без аккумулятора), в ток высокого напряжения во вторичной обмотке, который направляется по высоковольтному проводу к свече.
б — внешний вид у мотоцикла «Сова»;
г — мотоцикла «Урал» (двухискровая);
2 — первичная обмотка;
3 — вторичная обмотка;
4 — контакт провода высокого напряжения;
5 — провод высокого напряжения;
6 — контакты первичной обмотки
Обмотки катушки зажигания наматываются на сердечник из пластин трансформаторного железа. Первичная обмотка имеет несколько сотен витков толстого провода, а вторичная 15–20 тыс. витков тонкого провода. Корпус катушки неразборный, ремонту она не подлежит.
Свеча зажигания — неразборная; состоит из стального корпуса с резьбовой частью с одной стороны для вворачивания в головку цилиндра и стержня для соединения с колпачком высоковольтного провода с другой. Этот стержень, являющийся центральным электродом свечи, изолирован от ее корпуса. Свеча имеет в той части, которая входит в камеру сгорания, один или несколько боковых электродов. Между ними и центральным электродом устанавливается определенный зазор (обычно 0,5–1,0 мм), в котором образуется искра. Свечи различаются по размеру резьбовой части и калильному числу. Диаметр резьбы свечи у двухтактных двигателей — 14 мм; у четырехтактных, из-за ограниченности пространства камеры сгорания в многоклапанных головках, он меньше — 12 или 10 мм. Длина резьбовой части свечи должна точно соответствовать высоте отверстия в головке.
Устройство (а) и маркировка (б) искровой свечи зажигания, правильные и недопустимые способы ее установки (в)
1 — контактная гайка (может отсутствовать);
2 — оребрение изолятора;
3 — контактный стержень;
4 — керамический изолятор;
5 — металлический корпус;
6 — пробка стеклогерметика;
7 — уплотнительное кольцо;
8 — теплоотводящая шайба;
9 — центральный электрод;
10 — тепловой конус изолятора;
11 — рабочая камера;
12 — боковой электрод «массы»;
I — правильная установка;
II — нет уплотнительного кольца;
III — два уплотнительных кольца;
IV — резьбовая часть коротка;
V — резьбовая часть длинна
Калильное число характеризует способность свечи выдерживать тот или иной тепловой режим. Свечи с большим калильным числом называют «холодными», они применяются в форсированных двигателях. Благодаря особенностям конструкции, такие свечи мало нагреваются, интенсивно отводят тепло. В противоположность им, свечи с малым калильным числом называют «горячими». Каждому типу двигателя и режиму работы завод-изготовитель предписывает применение строго определенного типа свечей. На российских мотоциклах применяются свечи марок: А17В («Иж-Юпитер-5»), А23-1 («Сова», «Иж-Планета-5»), А14В («Урал»).
Схема тепловых потоков через «горячую» (а) и «холодную» (б) свечу
Через наконечник свечи (колпачок) импульсы высокого напряжения передаются от катушки зажигания на свечи. Кроме того, в наконечнике для снижения уровня радиопомех, излучаемых системой зажигания, установлен проволочный резистор, а корпус закрыт металлическим экраном. Нередко для защиты от радиопомех специальный резистор вставляют в корпус самой свечи — в этом случае в ее маркировке присутствует буква «R».
2 — гнездо с пружинным замком, в которое вставляется резьбовой наконечник свечи;
4 — высоковольтный провод;
5 — металлический экран
Существенный недостаток батарейной системы зажигания заключается в подгорании контактов, поскольку через них проходит ток высокого напряжения (до 5 А). Этого недостатка лишены контактно-транзисторные системы зажигания («ТАС»), устанавливавшиеся на некоторые зарубежные модели. В них контакты формируют только управляющий импульс тока низкого напряжения, поступающий к транзисторному коммутатору.
Бесконтактные системы зажигания. На современных мотоциклах контактные батарейные системы зажигания полностью вытеснены бесконтактными системами зажигания (БСЗ). Они более надежны и позволяют достигать высоких частот вращения коленчатого вала двигателя. Кроме того, БСЗ не нуждаются в обслуживании и периодической регулировке момента зажигания. Различают конденсаторные (тиристорные — CDI) и транзисторные (TI) системы, в которых применяют импульсные генераторы (датчики) разных видов: индуктивного типа (магнитоэлектрические) и использующие эффект Холла.
а — с индуктивным датчиком («Урал-Соло Классик»); б — с датчиком Холла («Урал-Волк»); в — схема магнитного потока, взаимодействующего с датчиком Холла; 1 — индуктивный датчик 2 — ротор с двумя постоянными магнитами; 3 — коммутатор; 4 — вращающийся экран датчика Холла; 5 — датчик Холла; 6 — основание со встроенным коммутатором; 7 — пазы для регулировки опережения зажигания
Индуктивный датчик представляет собой отдельную обмотку, схожую с обмоткой генератора. Конструкция такого датчика проста, и он не требует питания, однако вырабатываемое им напряжение управляющего импульса зависит от частоты вращения коленчатого вала двигателя; кроме того, форма импульса может быть искажена воздействием магнитного поля других обмоток генератора.
Датчик Холла состоит из чувствительного элемента и расположенного на небольшом расстоянии неподвижного постоянного магнита, между которыми создается магнитное поле. В пространстве между чувствительным элементом и магнитом вращается металлический экран с прорезью. Прорезь беспрепятственно пропускает магнитный поток, и на выходе элемента появляется ЭДС; сам же поток экран прерывает. Обычно датчик Холла совмещен с микросхемой, стабилизирующей напряжение его питания и усиливающей выходной сигнал. В многоцилиндровых двигателях экран имеет несколько прорезей по числу цилиндров (или их пар, если применены двухискровые катушки зажигания). Датчики Холла достаточно надежны, миниатюрны, потребляют малое количество энергии, а самое главное их достоинство — малая чувствительность к помехам от других обмоток генератора. Их недостатки — необходимость питания чувствительного элемента постоянным током и некоторая сложность в установке.
Сигнал от датчика любого типа поступает в электронный блок управления — коммутатор, который подает импульс на катушку зажигания.
Электронный коммутатор мотоциклов «Сова», «Курьер», «Минск»
В системах CDI энергия искрообразования накапливается в конденсаторе, который заряжается от бортовой сети или от специальных обмоток генератора. Управляемый диод (тиристор) не пропускает ток на «массу» до тех пор, пока на его ключ не будет подан положительный сигнал определенной силы и формы от датчика. В момент искрообразования магнит, расположенный в корпусе ротора, проходит мимо обмотки датчика и возбуждает в ней электрический ток. Этот ток, поступая на ключ тиристора, открывает его, и конденсатор мгновенно разряжается на «массу» через тиристор. В результате через первичную обмотку катушки зажигания проходит короткий и сильный электрический импульс — как в случае размыкания контактов в батарейной системе зажигания.
Упрощенная схема электронной бесконтактной системы зажигания CDI (а) и принцип работы тиристора (б):
1 — обмотка датчика; 2 — постоянный магнит ротора; 3 — обмотка зажигания; 4 — конденсатор; 5 — первичная обмотка катушки зажигания;
6 — вторичная обмотка катушки зажигания; 7 — свеча зажигания; 8 — тиристор; 9 — ключ тиристора; 10 — помехоподавительный диод
Системы CDI обеспечивают мощную, но относительно кратковременную искру. Такая схема предпочтительнее на двухтактных двигателях, для которых характерна работа на более богатых (а значит, легче «поджигаемых») смесях. В четырехтактных двигателях для надежного воспламенения бедных смесей требуется более «продолжительная» искра, которую создает система TI.
Все чаще на современных мотоциклах с многоцилиндровыми четырехтактными двигателями применяют цифровые микропроцессорные БСЗ как с механическим распределителем зажигания (ESA), или одной катушкой зажигания, обслуживающей два цилиндра, так и полностью электронные (DLI) с индивидуальными (на каждой свече) катушками зажигания. Для их управления двигатель оснащают рядом датчиков: частоты вращения и положения коленчатого вала (метки ВМТ), положения дроссельной заслонки, температуры охлаждающей жидкости и воздуха, содержания кислорода («лямбда-зонд»). Нередко цифровая БСЗ объединена с системой впрыска топлива («Motronic» мотоциклов БМВ).
Для нормальной работы двигателя, независимо от типа системы зажигания, важны правильная установка угла опережения зажигания, а также соответствие тепловой характеристики свечи типу двигателя и режимам его работы. Искра должна образоваться между электродами свечи не точно в ВМТ, а чуть раньше, поскольку воспламенение горючей смеси происходит с запаздыванием. Поэтому каждому типу двигателя и даже режиму его работы соответствует оптимальный угол опережения зажигания (в мм или градусах поворота коленчатого вала до ВМТ). При более раннем зажигании в двигателе возникает детонация (взрывное горение), приводящая к поломкам деталей цилиндро-поршневой группы. Позднее зажигание вызывает перегрев деталей двигателя и падение его мощности.
В четырехтактных двигателях корректировка угла опережения зажигания в зависимости от частоты вращения коленчатого вала осуществляется автоматическими регуляторами: центробежным или электронным в системах с БСЗ.
Центробежный регулятор состоит из двух пластин, на одной из которых закреплен кулачок, размыкающий контакты батарейной системы зажигания, а на другой — оси специальных грузов. Вторая пластина вращается вместе с валом, а грузы своими пальцами входят в пазы первой пластины. При увеличении частоты вращения вала грузы расходятся, преодолевая усилие пружин, и поворачивают на заданный угол (до 15°) пластину с кулачком. Из российских мотоциклов центробежный регулятор изменения угла опережения зажигания имеют мотоциклы «Урал» с контактной системой зажигания.
Центробежный регулятор опережения зажигания ПМ-302А батарейной системы зажигания («Урал», «Днепр»)
1 — корпус; 2 — конденсатор; 3 — контакты прерывателя; 4 — крышка; 5 — пластина регулятора с грузиками; 6 — пружина; 7 — пластина с кулачком; 8 — ушко с пазом для регулировки опережения зажигания
Подобные устройства имеют и электронные системы зажигания современных двухтактных двигателей («Иж-Планета-5» с генератором маховичного типа).
Основные неисправности системы зажигания — отсутствие или недостаточная сила искры, а также неправильно установленный момент зажигания. Для устранения проверяют всю цепь — от источника напряжения и контактной пары (датчика) до катушки зажигания, высоковольтного провода и свечи.
МОЙ МОТОЦИКЛ
Большое количество двигателей, отличающихся по рабочему объему, числу цилиндров, тактности, частоте вращения, конструкции и целевому назначению, привело к созданию разнообразных систем зажигания.
Системы зажигания ражигания разделяются на: Контактные и Бесконтактные.
Контактные: Батарейные: Классические, Контактнотранзис-торные. Автономные: Магнето агрегатное; Магнето
(магдино) встраиваемые: Магнето(магдино)маховичное; Магнето (магдино) роторное.
Бесконтактные: Батарейные: С накоплением энергии в ин-дуктивности; С накоплением энергии в емкости
Автономные: С накоплением энергии в индуктивности; С накоплением энергии в емкости: Системы зажигания с питанием от многополюсного генератора; Магнето бесконтактное.
Контактные, или классические, системы применяются чуть ли не с самого рождения двигателя внутреннего сгорания. Огромное число двигателей эксплуатируется с ними и поныне.
Итак, что же представляет собой «классика»?
Разберем ее на примере наиболее простой, батарейной системы. Она состоит из следующих элементов и узлов: катушки зажигания, контактов прерывателя, кулачка, конденсатора, искровых свечей (рис. 2а).
ко всей теме один общий рисунок
При замкнутых контактах прерывателя SA1 от источника постоянного напряжения через первичную обмотку w1 катушки зажигания протекает ток, нарастающий по экспоненте. В это время в первичной обмотке катушки запасается электромагнитная энергия. При размыкании контактов SA1 происходит разрыв цепи и благодаря запасенной энергии воз-никает ЭДС холостого хода. Она трансформируется во вторичную обмотку (1)2 катушки в виде импульса высокого напряжения, который используется для образования искры между электродами свечи.
Чем выше значение тока в момент разрыва контактов, тем мощнее импульс напряжения во вторичной обмотке. Это основной закон систем зажигания с накоплением энергии в индуктивности. Значение тока разрыва, в свою очередь, зависит от активного сопротивления цепи первичной обмотки (ее еще называют цепью низкого напряжения) и времени накопления, то есть времени замкнутого состояния контактов. Их размыкание происходит с помощью вращающегося кулачка и скользящей по нему пластмассовой «пяточки» подвижного контакта. Замыкание осуществляется благодаря тому, что этот контакт дополнительно подпружинен.
При размыкании контактов в самый начальный момент из-за ЭДС самоиндукции между контактами может возникать искра, которая значительно снижает напряжение на вторичной обмотке, да еще и приводит к интенсивному износу контактов. Для устранения этих недостатков параллельно контактам включается конденсатор С1. В первый момент после их размыкания ЭДС самоиндукции заряжает конденсатор, и к тому моменту, когда он зарядится, контакты разойдутся на такое расстояние, что искра между ними возникнуть уже не сможет. Емкость конденсатора выбирается оптимальной, так как большая снижает напряжение на вторичной обмотке, а малая не очень-то спасает от искрения.
В двухтактных двигателях кулачок находится на цапфе коленвала, в четырехтактных — на цапфе распределительного вала или шестерни.
Время накопления энергии зависит от угла замкнутого состояния контактов (УЗСК), который контролируется обычно косвенным путем — по зазору между контактами в разомкнутом состоянии (0,35…0,45 мм),
В рассматриваемом случае применена двухвыводная, или двухискровая катушка зажигания, благодаря которой удается произвести распределение искры по двум цилиндрам очень простым способом. Искровой разряд образуется на обоих выводах вторичной обмотки одновременно, однако рабочей искра будет только для того цилиндра, в котором заканчивается такт сжатия. В другом цилиндре, где заканчивается такт выпуска, искра будет чисто профилактической — для самоочистки свечи. На работоспособность двигателя в целом она не оказывает никакого влияния.
Батарейные системы зажигания с двухискровой катушкой применяются на мотоциклах «Урал», «Днепр», «Мото-Гуцци», «Харлей-Давидсон», БМВ.
Для одноцилиндрового двигателя используется одноискровая катушка, в которой обмотки соединены по автотрансформаторной схеме (рис. 26). Такие системы установлены на мотоциклах «ИЖ», «Ява», ЧЗ.
Для работы автономных систем зажигания не требуется посторонний источник напряжения— они питаются от своего собственного источника, который представляет собой, как правило, магнитоэлектрический «переменник».
По конструктивному исполнению автономные системы делятся на агрегатные и неагрегатные. Первые представляют собой законченную конструкцию, объединяющую в едином корпусе генератор, кулачок, прерыватель и катушку зажигания, у вторых, как правило, ротор и статор представляют собой отдельные детали, не имеющие собственного корпуса. Такие системы могут быть собраны только на конкретном двигателе.
Если «переменник» вырабатывает напряжение для питания только системы зажигания, то такая автономная система называется магнето. Если же вырабатывается еще и на-пряжение для питания систем освещения и сигнализации, то система носит название магдино.
Рассмотрим устройство и принцип действия агрегатного магнето
(рис. 3). Магнитная система включает в себя ротор, состоящий из постоянного магнита 1 и полюсов 2, две полюсные стойки статора 3 и сердечник высоковольтного трансформатора 4. Полюсные стойки и сердечник изготовлены из пластин электротехнической стали.
Электрическую цепь составляют первичная (w1) и вторичная (w2) обмотки трансформатора, прерыватель SA1, конденсатор С1 и кнопка выключения зажигания SA2.
При вращении ротора его полюса поочередно проходят мимо полюсных стоек 3, при этом магнитный поток (показан стрелкой) замыкается через сердечник высоковольтного трансформатора. Поскольку к полюсным стойкам подходят разные полюса, магнитный поток дважды изменяет свое направление за один оборот ротора (рис. 4). Изменяющийся как по величине, так и по напряжению, он пересекает витки обмоток трансформатора, наводя в первичной переменный ток напряжением 12…20 В, который течет по цепи «первичная обмотка — замкнутые контакты прерывателя — «масса» — первичная обмотка». В опре-деленный момент времени контакты размыкаются, и далее все процессы идут как в описанной выше батарейной системе.
Для получения максимальной величины напряжения вторичной обмотки необходимо синхронизировать момент размыкания контактов с максимумом амплитуды тока. Как видно из рисунка, он отстает от максимума амплитуды ЭДС на угол 8…10°. На такой же угол, называемый абрисом,смещают момент размыкания контактов относительно нейтрального положения магнита (рис. 5).
Выключается зажигание нажатием кнопки SA2. При этом первичная обмотка шунтируется и искрообразование прекращается. Кнопка обычно находится на корпусе магнето. Некоторые типы магнето имеют клемму для подключения кнопки дистанционного выключения зажигания.
Так действует одноискровое магнето. Существуют также двух- и четырехискровые магнето с низко- и высоковольтным распределением искры. Они применяются, например, нестационарных двигателях, тракторных «пускачах», мотопомпах.
Встраиваемые системы могут быть маховичными и роторными. В первом случае ротор представляет собой маховик с закрепленными на нем магнитами и полюсными башмаками. Вал маховика выполнен заодно с кулачком. На статоре закреплен сердечник высоковольтного трансформатора с обеими обмотками, конденсатор и контакты прерывателя (рис. 6). По-добными магнето оснащались бензопилы прежних лет выпуска.
Маховичные магдино содержат, кроме сердечника высоковольтного трансформатора, два-три сердечника с катушками питания систем освещения и сигнализации. Таким магдино оснащались мотоциклы «Паннония». Однако на большинстве магдино высоковольтный трансформатор выполняется в виде отдельной (выносной) катушки зажигания. Такими магдино оснащались мопеды «Рига», «Верховина», мотороллеры «Вятка», снегоходы «Буран» старых выпусков.
Роторные магнето и магдино представляют собой «переменники», устанавливавшиеся на «Мински» и «Ковровцы» прежних лет выпуска — Г-38, Г-401, Г-421, а также на велодвигатели Д-4, Д-5, Д-6.
Для регулирования угла опережения зажигания
используются центробежные регуляторы (в батарейных системах) или центробежные муфты (на агрегатных магнето). С увеличением частоты вращения коленвала угол опережения зажигания увеличивается, с уменьшением — уменьшается. Центробежными регуляторами оснащены мотоциклы «Урал», «Днепр», «ИЖ-49», мотороллеры Т-200, ТГ-200. Остальные мотоциклы и мопеды имеют постоянный угол опережения зажигания.
Достоинством контактных систем зажигания являются их простота и низкая стоимость. Однако имеется и масса недостат-ков, в первую очередь — износ пластмассовой «пяточки» и подгорание контактов прерывателя, что приводит к нарушению зазора между контактами. Из-за этого изменяется УЗСК, снижается выходное напряжение, на магнето и магдино «уходит» абрис и в результате нормальная работа двигателя нарушается.
Кроме того, из-за инерционности контактов ограничена максимальная частота вращения коленвала двигателя. Центро-бежный регулятор из-за износа деталей тоже вносит свою лепту в «увод» его характеристик. Поэтому приходится постоянно контролировать углы и зазоры. Все это, вместе взятое, привело к тому, что контактные системы в настоящее время «сходят со
сцены», уступая место более совершенным бесконтактным электронным. Промежуточным звеном между контактными и бесконтактными системами были комбинированные контактно — транзисторные и контактно-тиристорные.
В принципе на этой ноте я и окончу эту статью. Пользуйтесь на здоровье……