Принцип работы коммутатора авто
Коммутатор зажигания
При появлении электрических узлов в конструкции первых автомобилей, поджог горючей смеси осуществлялся с помощью батарей. Эта система имела примитивную схему, которая в современных автомобилях подверглась существенной модернизации. Суть работы таких устройств заключается в создании искры внутри камеры сгорания, что приводит к дальнейшей цепной реакции горения топлива в цилиндрах. Метод действия этих систем основан на принципе самоиндукции. Магнитная катушка преобразовывает низкое напряжение в высокое. Ток протекает по замкнутой цепи, при разрыве которой возникает искра на свече.
По такому же принципу срабатывания работают системы зажигания и на отечественных автомобилях. Основные отличия современных систем заключаются в новой элементной базе, изменению определённых деталей и добавлении коммутаторов. Он представляет собой специальное устройство, которое включается в цепь питания первичной обмотки катушки. Коммутатор выполняет функцию регулировки импульсов и по сигналу от управляющего блока разрывает питание, что приводит к возникновению искры.
Принцип работы коммутатора зажигания
Коммутатор зажигания, схема которого более сложная по сравнению с первыми устройствами для воспламенения горючей смеси, имеет транзитные ключи. Такое конструктивное решение является достаточно простым и эффективным. Эти узлы используются для управления током, протекающим через катушку зажигания.
Стоит отметить, что ключи не оказывают влияния на принцип работы, который основан на электромагнитной индукции. Транзисторы уменьшают нагрузку на контакты прерывателя и увеличивают силу тока, протекающего через обмотку. Это техническое изменение дало ряд преимуществ современным системам, в число которых входят:
Повышенная степень сжатия.
Увеличение срока службы и надёжности всей системы зажигания.
Возможность работать на повышенных нагрузках, при высокой скорости движения и больших оборотах силового агрегата.
Виды коммутаторов
При обзоре основных типов коммутаторов необходимо упомянуть то, что современные системы наделены рядом существенных преимуществ, благодаря которым эти устройства получили повышенную эффективность и надёжность. Достичь таких показателей удалось применением в конструкции микропроцессорных узлов. Сегодня автомобильный рынок предлагает самые различные модели, в число которых входят двухканальные и многоканальные коммутаторы. В зависимости от используемых в конструкции деталей, данные устройства делятся на несколько типов:
Транзисторные. В них используется контактная система, что снижает срок их службы в виду быстрого износа элементов из-за обгорания. Энергия накапливается в электромагнитном поле катушки.
Тиристорные. Главным отличием от первого вида является то, что в этих устройствах создание необходимой силы тока происходит в конденсаторе. При включении системы, происходит подключение заряженного конденсатора к обмотке катушки. Внутри их происходит разряжение, которое приводит к возникновению искры на свече.
Гибридные. Этот вид коммутаторов пользуется хорошей популярностью. Он представляет собой тандем нескольких вышеописанных типов. Данное конструктивное решение позволяет повысить эффективность и свести к минимуму недостатки.
Бесконтактные устройства считаются наиболее эффективными системами. Этот вид представляет самые современные коммутаторы, которые значительно превосходят по параметрам другие виды. В их конструкции используются инфракрасные электронные датчики. Отсутствие контактного способа зажигания обеспечивает длительный ресурс работы, так как нет сегментов, на поверхности которых накапливается нагар. На отечественных автомобилях эта система зажигания была впервые представлена на моделях ВАЗ-2108.
Диагностиканеисправностей коммутатора
В 1991 году появились первые отечественные автомобили, конструкция которых, включала коммутатор зажигания. Это новое техническое решение позволило значительно повысить эффективность системы и улучшить общие показатели КПД. Несмотря на то что первыми серийными моделями, имеющими модернизированную систему пуска мотора, были ВАЗ 2108, коммутаторы устанавливают и на более поздние экземпляры, выпущенные при Советском Союзе. Поскольку конструкция классических автомобилей не предусматривает наличия такого механизма, это усложняет процедуру поиска неисправностей при их возникновении. В большинстве случае для ремонта требуется специальное оборудование. Из-за высокой цены, покупать его для разовых проверок нет смысла. Основными признаками поломок коммутатора могут быть:
Отсутствие искры на свече зажигания, из-за чего не запускается двигатель.
Самопроизвольное выключение мотора.
Неустойчивая работа силового агрегата.
Замена исправным налогом. Проверить работоспособность коммутатора можно в домашних условиях. Для этого потребуется проверенный исправный аналог. При наличии изменений в работе двигателя можно будет точно определить состояние первого устройства. Такой метод диагностики является самым распространённым и наименее затратным. Сама деталь не отличается высокой ценой, а наличие запасной позволит всегда устранить поломку в любом месте за несколько минут. Данный способ проверки востребован из-за низкого качества отечественных деталей, которые монтируются на заводе.
С помощью вольтметра. Второй способ проверки коммутатора не требует его демонтажа. Однако такая операция может проводиться только при наличии вольтметра. Процедура выполняется следующим образом:
Включите зажигание и подключите к детали вольтметр.
Стрелку на приборе нужно установить посередине шкалы.
Через несколько минут после подсоединения стрелка должна качнуться вправо. Это происходит из-за автоматического отключения катушки питания при неработающем моторе.
Если все прошло, как описано выше, коммутатор исправен.
С помощью лампочки. В случае, когда у вас нет вольтметра, проверить работоспособность механизма можно, воспользовавшись контрольной лампой. Включите зажигание, один провод лампы нужно присоединить к массе, а второй подключите к 1 клемме коммутатора. В случае отсутствия поломок спустя некоторое время лампа засветиться.
Устройство автомобилей
Коммутаторы системы зажигания
Назначение и принцип работы коммутатора системы зажигания
В системе зажигания автомобильных двигателей для получения тока высокого напряжения, вызывающего искрообразование на электродах свечей, используется принцип электромагнитной индукции – катушка зажигания, представляющая собой своеобразный трансформатор, способна преобразовать напряжение бортовой цепи автомобиля (12 В) в напряжение, достигающее несколько тысяч вольт. Для этого необходимо периодически подавать и отключать ток от первичной цепи катушки зажигания, в результате чего постоянный ток бортовой цепи становится переменным (циклически изменяющимся по величине от нуля до 12 В и наоборот).
Первые системы зажигания двигателей использовали для этих целей устройства (прерыватели), смыкающие и размыкающие электрические контакты механическим способом. В принципе, эти устройства можно назвать родоначальниками современных коммутаторов автомобильных систем зажигания.
Однако, механические (контактные) коммутаторы имели ряд существенных недостатков, которые по мере развития и совершенствования автомобильных двигателей проявлялись все отчетливее. Контакты имели склонность к подгоранию, требовали систематической чистки и регулировки зазора, и не могли «похвастать» стабильностью создаваемого импульса по величине и продолжительности.
Кроме того, они обладали заметной инертностью, как и все механические устройства, что ограничивало возможности высокооборотистых двигателей, а недостаточно продолжительная и мощная искра была камнем преткновения для увеличения степени сжатия.
Тем не менее, такие системы зажигания длительное время использовались в автомобилях, и только появление и совершенствование полупроводниковых приборов позволило конструкторам совершить своеобразную революцию в способе коммутации управляющих импульсов.
На первых порах от использования механических контактов прерывателя конструкторы не отказались, но решили проблему с их электрической нагрузкой, приводящей к подгоранию. Через контакты прерывателя пропускался слабый ток управления, который подавался на базу мощного транзистора, служащего усилителем сигнала, поступающего в первичную цепь катушки зажигания.
Так появились контактно-транзисторные системы зажигания, и первые полупроводниковые коммутаторы. Впоследствии конструкторы систем зажигания отказались от механических контактов, использовав для формирования маломощного импульса различные магнитоэлектрические датчики, а также датчики, работающие на эффекте Холла.
Усовершенствование этих устройств продолжается и в настоящее время, при этом современные коммутаторы автомобильных систем зажигания совершенно отличаются от своих механических и даже транзисторных «предков».
Применение полупроводниковых и микропроцессорных коммутаторов в контактно-транзисторных или бесконтактных системах зажигания позволяет получить следующие преимущества:
В целом увеличивается надежность работы системы зажигания и снижается трудоемкость ее технического обслуживания.
Выпускаемые коммутаторы контактно-транзисторных и бесконтактных систем зажигания делятся на три группы:
Коммутаторы для контактно-транзисторных систем зажигания
Коммутаторы контактно-транзисторных систем и коммутаторы с постоянной скважностью импульсов выходного тока для бесконтактных систем зажигания функционально просты и содержат небольшое количество полупроводниковых компонентов (как правило, не более четырех транзисторов). Они относятся к первой группе. Их основой служит литой алюминиевый корпус, имеющий ребристую наружную поверхность для улучшения теплоотдачи.
Внутри корпуса расположены все элементы коммутатора за исключением выходного транзистора, который монтируется на корпусе в специальном кармане.
Для многих типов транзисторов (например, n-p-n) необходима изоляция от корпуса коммутатора, поэтому они монтируются через специальную прокладку. Для снижения теплового сопротивления перехода между корпусом коммутатора и прокладкой наносят теплопроводные пасты, благодаря чему охлаждение выходного транзистора более интенсивно.
Для подключения коммутатора к бортовой сети автомобиля и к элементам системы зажигания используется клеммная колодка.
Коммутатор ТК102
На рис. 1 показан коммутатор ТК102, относящийся к первой группе, который предназначен для работы в контактно-транзисторной системе зажигания автомобилей с восьмицилиндровыми двигателями, но может быть использован для работы с любым классическим распределителем зажигания. В качестве нагрузки используется катушка Б114 (W2/W1 = 235; L1 = 3,7 мГн; R1 = 0,42 Ом).
Для ограничения первичного тока используется добавочное сопротивление СЭ107 (1,04 Ом). Коммутатор ТК102 имеет один мощный германиевый транзистор ГТ701А (VT1), стабилитрон Д817В (VD2) и диод Д7Ж (VD1), служащие для защиты от перенапряжения силового транзистора VT1.
Дроссель L1 и резистор R1 предназначены для ускорения процесса запирания транзистора VT1, конденсатор С1 первичного контура возбуждения катушки зажигания и конденсатор С2 служат для защиты компонентов схемы коммутатора от скачков напряжения в бортовой сети автомобиля.
В случае отказа коммутатора (например, при выходе из строя транзистора) можно перекинуть провода в стандартное положение, и двигатель продолжит работать, что позволит водителю добраться до места ремонта.
Коммутаторы для бесконтактных систем зажигания
Коммутаторы этого типа используются в системах зажигания, где для формирования импульса управления током первичной цепи катушки зажигания используются не механически управляемые контакты, а магнитоэлектрические датчики.
Электронные коммутаторы бесконтактных систем зажигания выполняют следующие функции:
Различные коммутаторы могут выполнять и дополнительные функции:
На входные клеммы коммутатора поступают импульсы управления, формируемые бесконтактным датчиком углового положения коленчатого вала двигателя или электронным регулятором напряжения – коллектором.
Выходом (нагрузкой) коммутатора является первичная обмотка катушки (или катушек) зажигания. В случае, когда коммутатор обслуживает две или несколько катушек, он выполняет функцию распределителя высоковольтных импульсов по цилиндрам двигателя.
Многочисленные коммутаторы бесконтактных систем зажигания можно разделить на две группы:
Общим для обеих групп коммутаторов является наличие в выходной цепи мощного выходного транзистора, способного коммутировать токи амплитудой до 10 А в индуктивной нагрузке коллектора.
Коммутатор 13.3734
Примером коммутаторов для бесконтактных систем зажигания может служить коммутатор 13.3734, разработанный на базе первого серийного отечественного коммутатора ТК200 «Искра». Коммутатор предназначен для совместной работы с бесконтактным магнитоэлектрическим датчиком, катушкой зажигания Б116 и добавочным сопротивлением 14.379.
Коммутатор 13.3734 (рис. 2) содержит выходной резистор VT3 (КТ848А), каскад предварительного усиления на транзисторе VT2 (КТ630Б) и резисторе R7, формирователь сигнала датчика на транзисторе VT1 (КТ630Б) и элементах R1-R8, С1, VD1, VD2.
Между выходом и входом коммутатора имеется положительная обратная связь (R10, С7), обеспечивающая стабильную работу коммутатора на пусковых частотах вращения валика распределителя (20…30 об/мин). Цепь R3-С1 служит для уменьшения электрического смещения момента зажигания в зависимости от частоты вращения вала датчика.
Коммутатор содержит также элементы схемы (С2-С4, VD3, VD4, R8) и цепи защиты выходного транзистора (С5, С6, R9). Коммутатор выполнен на печатной плате, на которой смонтированы маломощные элементы схемы. Плата установлена в оребренный литой дюралюминиевый корпус, где размещены силовые элементы.
Коммутаторы с нормируемой скважностью импульсов выходного тока
Коммутатор 36.3734
Первый отечественный коммутатор 36.3734 с нормируемой скважностью импульсов выходного тока, применяемый на автомобиле ВАЗ-2108, выполнен также по дискретной технологии и предназначен для работы с бесконтактным датчиком, работающим на эффекте Холла.
В качестве нагрузки используется катушка зажигания 27.3705 (W2/W1 = 85; L1 = 3,8 мГн; R1 = 0,5 Ом).
В коммутаторе 36.3734 реализовано программное регулирование времени накопления энергии в первичной обмотке катушки зажигания, активное ограничение уровня первичного тока (8…9 А), ограничение амплитуды импульса первичного напряжения (350…380 В), безыскровое отключение первичного тока при остановленном двигателе (Тоткл = 1,53 с). Последнее предназначено для плавного запирания коммутационного транзистора для предотвращения искрообразования при остановке двигателя, когда катушка зажигания осталась под током.
В коммутаторе 36.3734 функциональные основные узлы выполнены на операционных усилителях DA1.1-DA1.4, которые являются компонентами микросхемы К1401УД1.
На базе усилителей DA12 и DA13 реализованы интегратор и компаратор (нормирование скважности импульсов) выходного тока. На усилителе DA1.1 собрана схема безыскрового отключения тока, на усилителе DA1.4 – компаратор ограничения амплитуды выходного тока. В качестве выходного транзистора применен транзистор Дарлингтона КТ848А.
Конструктивно коммутатор представляет собой печатную плату, на которой размещены радиокомпоненты схемы, за исключением выходного транзистора VT4, защитного диода VD7 и стабилитрона VD4 ограничителя напряжения питания, которые смонтированы на корпусе коммутатора.
Для подключения коммутатора к бесконтактному датчику Холла, к катушке зажигания и источнику питания используется съемно-контактный разъем.
Коммутатор 42.3734
Идеи программного регулирования скважности импульсов выходного тока реализованы также в системах зажигания с низковольтным распределением высоковольтных импульсов напряжения. При этом коммутаторы обычно выполняются двухканальными – обслуживающими две катушки зажигания.
Электрическая схема дискретного двухканального коммутатора 42.3734 разработана на основе электрической схемы коммутатора 36.3734. Основное различие заключается в наличии двух выходных каскадов (VT4, VT6 и VT5, VT7), управляющих работой выходных транзисторов VT8 и VT9. В свою очередь выходные каскады управления каналов коммутатора посредством ключевого каскада на транзисторе VT2 (КТ342А).
Схема коммутатора также снабжена устройством формирования сигнала для управления тахометром (VD14, VD15, R53, R54).
Коммутатор 42.3734 выполнен на двух печатных платах (рис. 3): плате управления А1, на которой размещена операционная часть коммутатора, и силовой плате А2 с элементами выходных каскадов и выходными транзисторами. Причем последние смонтированы на дополнительном теплоотводе. Платы установлены в корпусе одна над другой.
Достоинства и недостатки различных типов коммутаторов
К недостаткам коммутаторов первой группы можно отнести большие габаритные размеры и массу, а также при крупносерийном производстве низкую технологичность и недостаточную надежность в связи с большим числом радиокомпонентов.
Существенного снижения массогабаритных показателей можно добиться при изготовлении коммутаторов по толстопленочной технологии с применением стандартных бескорпусных компонентов. Однако такая технология является относительно дорогой и трудоемкой, поэтому не нашла широкого применения в промышленном крупносерийном производстве коммутаторов.
Наилучшими показателями с точки зрения трудоемкости и технологичности производства, а также надежности обладают коммутаторы третьей группы, которые содержат специальную микросхему, где размещаются основные функциональные узлы: схема нормирования скважности с адаптацией по уровню выходного тока, схема безыскрового отключения тока, устройство ограничения тока и др. По гибридной толстопленочной технологии выполняется силовая часть схемы коммутатора с элементами защиты от импульсных перегрузок по цепи питания. Примером использования этой технологии может служить коммутатор 0.227.100.103 фирмы «Бош» (Германия), схема которого приведена на рис. 4.
В схему входят следующие элементы: бескорпусной выходной транзистор VT1; специализированная микросхема DA1 (МА 7355) с миниатюрными навесными конденсаторами С2-С5, выполняющая основные функции коммутатора; корпусные диод VD1, стабилитрон VD2, миниатюрный конденсатор С1 и толстопленочные резисторы R3, R4, выполняющие функции защиты от импульсных перенапряжений в бортовой сети и перепутывания полярности аккумуляторной батареи.
Также имеются толстопленочные резисторы, служащие для изменения и подстройки требуемых уровней первичного тока (R6, R7, R10) и первичного напряжения (R8, R9). Цепь защиты выходного транзистора выполнена на дискретных элементах С7 и R11.
Налажен выпуск аналогичных коммутаторов, выполненных в виде большой гибридной интегральной схемы (БГИС), представляющей собой толстопленочную микросборку операционной части и микросборку силовой части коммутатора, смонтированные на медном основании СА из полимерного материала. Причем корпус выполнен заодно с семиштырьковым разъемом. Корпус герметизируется приклеиваемой крышкой. Подложками толстопленочных сборок служит алюмооксидная керамика (Al2O3).
Внешний вид одноканального и двухканального коммутаторов показан на рис. 5.
По мере развития цифровой и микропроцессорной техники и разработки комплексных систем управления двигателем транзисторный коммутатор, сохраняя свое функциональное назначение, в конструктивном плане может не иметь очертания самостоятельного изделия, объединяясь в единую конструкцию с цифровым контроллером. Следующим шагом на пути интеграции электронного блока является передача функции нормирования скважности импульса выходного тока в схему контроллера. В этом случае модуль коммутатора реализует функции распределения высоковольтных импульсов, ограничения тока и первичного напряжения, выдачи сигнала обратной связи об уровне тока в катушке зажигания.
Контроллеры
Выпускаются контроллеры серии МС2715.03 для легковых автомобилей ВАЗ-21083 и МС2713.01 для грузовых автомобилей ЗИЛ-4314, предназначенные для управления углом опережения зажигания по оптимальной характеристике регулирования на основе информации от датчиков начала отсчета, частоты вращения коленчатого вала двигателя, разрежения в задроссельном пространстве карбюратора (или впускном трубопроводе инжекторного двигателя) и температуры охлаждающей жидкости.
Контроллеры осуществляют также управление электроклапаном экономайзера принудительного холостого хода (ЭПХХ). Контроллер МС2715.03 для легковых автомобилей с четырехтактным четырехцилиндровым двигателем вырабатывает сигнал «Выбор канала» для обеспечения функции статического распределения энергии по цилиндрам двигателя.
Структурная схема контроллера приведена на рис. 6. На выводы контроллера поступают сигналы датчика начала отсчета (НО), датчика угловых импульсов (УИ), датчика частоты вращения коленчатого вала (КВ), датчика разрежения (Р), датчика температуры охлаждающей жидкости (Тохл).
После обработки сигналов датчиков в аналого-цифровом преобразователе (АЦП) информация о параметрах двигателя в виде цифровых кодов поступает в процессор, который производит вычисление частоты вращения коленчатого вала двигателя, разрежения, температуры, углового положения коленчатого вала двигателя и на основании этих данных вычисляет угол опережения зажигания в соответствии с картой углов опережения зажигания двигателя, которая хранится в памяти процессора.
Синхронизация работы контроллера с работой двигателя и формирование сигнала «Выбор канала» производится посредством импульсов датчика НО. Выходные сигналы процессора управляют работой формирователей импульса зажигания (ФИЗ) и выбора канала усилителя ЭПХХ. Сигналы ФИЗ и ВК непосредственно управляют работой двухканального коммутатора.
Принцип работы коммутатора зажигания, какие виды бывают и как проверить неисправность
Коммутатор зажигания имеется на каждом автомобиле независимо от модели и года выпуска. Устройства могут разделяться на отдельные виды, но принцип их действия остается примерно одинаковым. Но не каждый автолюбитель знает, что это такое, и какую функцию выполняет обычный коммутатор, без которого было бы невозможно завести двигатель и тронуться с места.
Это простое электронное устройство всего лишь выполняет функцию искрообразования. Но сбои в его работе могут привести к неустойчивости работы двигателя на холостых оборотах или в других режимах работы агрегата. Иногда начинают искать проблему именно в системах двигателя вместо того, чтоб разобраться – правильно ли формируется электрический импульс коммутатора системы зажигания.
Проверить его работу можно как в сервисе, так и в домашних условиях. Правда, во втором случае придется приобрести или сделать самому специальный прибор. Зато под рукой всегда будет устройство, с помощью которого можно будет определить причину затрудненного зажигания или других распространенных проблем в работе автомобиля.
ЧТО ТАКОЕ КОММУТАТОР ЗАЖИГАНИЯ
Это умное слово, на самом деле, обозначает до примитивности простое устройство. Оно отвечает за искрообразование в системе зажигания. Момент искрообразования осуществляется в блоке зажигания. А коммутатор – то небольшое электронное устройство, управляющее блоком.
Для большего понимания, любая система зажигания делится на две основные части – это система управления и система исполнения искрового разряда. Система управления формирует момент появления искры, а система исполнения – непосредственно формирует эту искру. В данной статье речь пойдет именно об управлении искрой в системе зажигания. Но чтоб немного разобраться в его функциях, следует вспомнить некоторые моменты из автомобильной истории.
Видео что такое коммутатор:
Каким может быть коммутатор системы зажигания
Приведенная выше схема коммутатора – лишь один из вариантов, как может быть реализовано устройство зажигания. Это выполняется с использованием:
Транзисторная схема коммутатора рассмотрена выше, тиристорная схема использует накопление энергии в конденсаторе, а не в электромагнитном поле катушки зажигания. В ходе работы тиристорной системы, при поступлении управляющих сигналов, схема подключает заряженный конденсатор к обмоткам катушки, через которую он и разряжается, вызывая появление искры. Не касаясь достоинств и недостатков, которыми обладает та или иная схема, достаточно сказать, что любое подобное устройство обеспечивает значительное улучшение всех параметров системы зажигания, а коммутатор со временем вытеснил обычное батарейное зажигание.
Однако необходимо отметить и ещё один этап развития системы, и коммутатора в частности. Использование электронных компонентов и введение в конструкцию автомобиля коммутатора, позволило со временем отказаться от контактного прерывателя напряжения и заменить его бесконтактным датчиком. Такая система, в отечественных автомобилях, впервые была применена в машинах ВАЗ, в частности ВАЗ 2108. Подобный принцип работы, когда коммутатор получает сигналы от специального узла, на ВАЗ 2108 реализован с использованием датчика Холла.
При рассмотрении вариантов, каким может быть устройство коммутатора, нельзя обойти вниманием развитие самой системы зажигания. Основной принцип, который реализуется при ее построении – повышение надежности и эффективности работы всей системы. Достигается это применением микропроцессорных систем, использующих показания многочисленных датчиков. Для работы с такими системами требуется, как минимум, двухканальный коммутатор, а в последнее время и отдельная катушка, и коммутатор на каждую свечу. Такой подход – двухканальный коммутатор (в дальнейшем и многоканальный) позволяет обеспечить:
Стоит отметить, что двухканальный коммутатор позволяет избавиться от бегунка.
ПЕРВЫЕ КОММУТАТОРЫ
На первых автомобилях устанавливались самые простые блоки управления системой зажигания. Схема их работы приведена ниже.
В данной схеме используется принцип самоиндукции. Разрыв цепи протекания тока в обмотке бобины сопровождается вторичной высоковольтной ЭДС. При этом на контакте свечи появляется искра. Цепь разрывается благодаря замыканию контактов на прерывателе.
Эта схема коммутатора зажигания отличается простотой и надежностью, потому устанавливалась на автомобили долгое время, несмотря на ее явные недостатки. Даже после изменения элементарной базы, первоначальный принцип работы устройства сохранился.
Основной недостаток такой системы – слишком высокий ток, протекающий через катушку. Как результат – появление искрения в прерывателе, его оплавление и обгорание контактов. К этому следует добавить и небольшую длительность искрового разряда. В результате для полноценного поджигания требуется более обогащенная горючая смесь, появляется плохая приемистость двигателя на низких оборотах, увеличивается расход топлива.
Но со временем автомобилестроение вышло на новый уровень, и в системах зажигания начали использоваться электронные коммутаторы зажигания.
Типы коммутаторов
Из всего разнообразия данного вида приборов для авто и мототехники предназначены следующие:
Коммутаторы DC-типа являются самыми применяемыми из-за легкого подключения, они имеют на корпусе лишь четыре контакта: датчик Холла, минус, плюс, катушка зажигания.
Данные приборы имеют широкий модельный ряд:
Коммутаторы АС-типа отличаются от первых тем, что им не нужно постоянное наличие напряжения, и подключаются они несколько сложнее. Также они имеют очень маленькие размеры и, следовательно, более простую конструкцию. В силу этого они не обладают ограничителем максимального числа оборотов, что снижает безопасность использования техники.
Коммутаторы-катушки представляют собой самый интересный, слабоизученный и малораспространенный вид. Они соединяют в себе катушку зажигания и коммутирующий элемент, а также не оснащены датчиком Холла.
Принцип их действия заключается в прерывании тока, который протекает через высоковольтный трансформатор с низковольтной намоткой-катушкой. Само прерывание осуществляется контактным выключателем, что приводится в действие с помощью вала распределителя зажигания.
Система с механическим прерывателем имеет следующие недостатки:
Устранение этих недостатков стало возможным с появлением высоковольтных транзисторов высокой мощности и созданием бесконтактных систем электронного зажигания.
Некоторые водители пытаются улучшить технические характеристики транспортного средства путем замены контактной системы зажигания бесконтактной от новой модели. Это затратно и трудоемко, ведь требуется поменять систему зажигания полностью и приобрести электронный коммутатор. Кроме того, не всегда удается найти подходящий к старому новый вариант коммутации зажигания.
Несмотря на это, даже если между катушкой зажигания и контактным прерывателем подключить простой коммутатор на мощном транзисторе, можно заметно повысить качество системы контактного зажигания автомобиля:
ЭЛЕКТРОННЫЙ КОММУТАТОР
Работа коммутатора зажигания нового поколения основана на применении электронных ключей. В их качестве применяются транзисторы VT1 и VT2. Их использование уменьшает нагрузку контакта прерывателя и увеличивает ток, который протекает через обмотку катушки. Вследствие такого решения повысились характеристики работы устройства:
Электронные системы могут быть следующих видов:
Для достижения высоких показателей надежности и производительности, используются двухканальные системы. А также – многоканальные, или многоискровые коммутаторы.
Немного истории
В системе зажигания первых автомобилей применялась опция батарейного зажигания, функционировавшая по принципу самоиндукции. Эта схема работы прижилась в авто на очень длительный срок, пока не были созданы новые элементы. Они дали возможность усовершенствовать устройство и при этом сохранить сам принцип работы коммутатора.
Следующим шагом в развитии данного прибора явилось создание его электронного аналога с использованием ключей на основе транзисторов для автоуправления током, что протекает в катушке зажигания. Функционирование по принципу ЭМИ осталось, а с помощью ключей уменьшалась нагрузка, прилагаемая к контактным группам прерывателя, и увеличивался ток, что протекал через обмотку катушки.
Введение такого технического новшества дало следующие результаты:
Далее в составе коммутаторов стали применять:
Применение данных деталей в узлах коммутаторов заметно повысило качество работы авто и сделало возможным отказ от использования батарейного зажигания.
То, что в системы управления автомобилем был введен электронный коммутатор, позволило с течением времени произвести замену контактного прерывателя напряжения на бесконтактный датчик. Первым таким устройством был коммутатор ВАЗ, зажигание которого основано на применении датчика Холла.
Следующим шагом стало создание многоканальных устройств, а затем и установка отдельной системы, состоящей из коммутатора и катушки, выполненных на каждой свече. Это дало свои преимущества:
ГИБРИДНЫЕ КОММУТАТОРЫ
Их следует разобрать немного подробней. Система кулачкового коммутатора зажигания, схема которого приведена выше, использует кулачковый трамблер и электронный коммутатор с катушкой. Применение элементов электронного зажигания значительно повышают экономичность данного устройства и увеличивают его надежность. Вместо датчика Холла к коммутатору подключаются кулачки. Их можно подсоединить и своими руками.
Удобство применения этой схемы характеризуется тем, что при выходе из строя коммутатора можно переключить провода на старую катушку и дальше можно ехать на кулачковом зажигании.
БЕСКОНТАКТНЫЕ КОММУТАТОРЫ
С введением в систему зажигания электронных приборов, производители авто со временем начали отказываться от контактных коммутаторов. Прерыватели напряжения стали заменяться бесконтактными датчиками. Как работает такой коммутатор? Все довольно просто: устройство теперь получает сигналы от узла под названием датчик Холла. Кстати, на отечественных автомобилях бесконтактные коммутаторы впервые начали применяться для ВАЗ 2108.
При использовании датчиков пропали перебои в искрообразовании, уменьшилась погрешность между моментом поджига горючей смеси в правом и левом цилиндре. Но никуда не делась проблема поиска оптимальной зависимости угла опережения зажигания от оборотов агрегата. Эту проблему помог устранить коммутатор с опережением угла зажигания с микроконтроллерной системой.
В них сигнал с электронного датчика подается на вход Х1. В этом устройстве обработка сигнала выполняется микроконтроллером, который определяет момент включения-выключения катушки. Ее коммутацию определяют транзисторные ключи, которые управляют сигналом контроллера. В результате график угла опережения выглядит таким образом:
Каким может быть коммутатор в автомобиле?
Современные коммутаторы эффективны и надежны благодаря микропроцессорам. Сейчас в магазинах продают разные модели. Все коммутаторы можно поделить на:
Датчики сыграли роль в улучшении процесса образования искры — перебои прекратились, погрешность воспламенения горючего в правом цилиндре уменьшилась. Проблема зависимости угла опережения от частоты оборотов двигателя осталась, но и она была решена при помощи микроконтроллерной системы. Устройства, в которые она интегрирована, получают сигнал с датчика на вход Х1. Здесь его обработкой занимается микроконтроллер, определяющий момент активации и деактивации катушки.
Кстати, на машинах российского производства бесконтактники впервые были установлены на ВАЗ 2108.
ДВУХКАНАЛЬНЫЙ КОММУТАТОР
Двухканальный коммутатор можно сделать и своими руками. Для этого не нужно обладать углубленными познаниями в электротехнике или быть хорошим механиком. Зато незначительные поправки в системе зажигания обеспечат ее бесперебойную работу в различных условиях езды. Одноконтактные коммутаторы давно устарели. А переоборудованный вариант сразу позволит почувствовать его преимущества. Итак, нужно будет выполнить следующий порядок действий:
Конечно, процедура займет некоторое время, ведь многие действия будут связаны с электрикой автомобиля. Но двухканальный коммутатор зажигания позволит легче заводить машину, а заодно – экономить топливо и поддерживать ресурсы двигателя.
КАК ВЫЯВИТЬ НЕИСПРАВНОСТИ В КОММУТАТОРЕ
Несмотря на явные преимущества более новых коммутаторов, они имеют один недостаток: выявить проблему в их работе сложнее, чем в случае с одноконтактными устройствами. Особенно эта проблема касается тех водителей, которые установили новые коммутаторы на свой автомобиль. Как правило, неисправности в двухконтактных или электронных коммутаторах можно выявить только в условиях специализированных сервисных центров. Но следует обращать внимание также на явные признаки в работе систем зажигания:
Если наблюдается хотя бы один из этих признаков, значит стоит заменить прибор на исправный.
Важно!В комплектацию многих автомобилей ВАЗ, а также, некоторых других относительно недорогих марок авто, входят коммутаторы низкого качества. Потому лучше возить с собой запасной исправный прибор для его своевременной замены в случае поломки.
Также исправность прибора можно проверить и с помощью вольтметра. При включении зажигания стрелка должна установиться посредине шкалы. Затем она при отключении питания качнется вправо. Данные показатели прибора будут свидетельствовать о нормальной работе коммутатора.
Можно использовать и самодельный прибор для проверки коммутатора. Он являет собой контрольную лампу, которую легко можно сделать своими руками. Один конец лампы присоединяется на массу, второй – к выходу катушки. Если зажигание включить, то при исправности устройства через непродолжительный отрезок времени лампа станет гореть немного ярче.