Принцип работы машины колосс
Компьютер Colossus был разработан британскими инженерами в декабре месяце 1944 года, а его целью была быстрая расшифровка сообщений немецких коммуникаций, зашифрованных с помощью немецкой электромеханической шифровальной машины Lorenz SZ40/42, которая шифровала информацию в зависимости от положения ее 12 дисков и использовалась для шифрования сообщений коммуникаций верхнего уровня. Вращение колес машины Lorenz SZ40/42 позволяло менять функцию шифрования для каждого символа передаваемого сообщения, что делает процесс анализа и дешифровки сообщения весьма трудным делом, практически невозможным на момент 1944 года.
Вполне возможно, что шифр машины Lorenz SZ40/42 так и остался бы тайной, но в 1941 германские операторы совершили ошибку. Передача достаточно длинного сообщения из Афин в Вену прошла с ошибками и оператор произвел повторную передачу того же сообщения с теми же самыми ключами шифрования (начальным положением колес машины Lorenz SZ40/42). Используя эти два сообщения, закодированные одним ключом, ученые-математики вскрыли алгоритм шифрования, сделав возможным расшифровку более поздних сообщений.
Но, даже зная алгоритмы шифрования машины Lorenz SZ40/42, в то время не было эффективного способа быстро декодировать перехватываемые сообщения без знания точного положения колес машины, которое менялось каждый день. Единственным методом так и оставался метод перебора всех возможных положений колес с последующей дешифровкой. Но когда такой процесс дешифровки заканчивался, как правило информация уже давно теряла свою актуальность.
Поэтому, в 1943 году было начато сооружение компьютера Colossus, который мог выполнить анализ зашифрованных сообщений с высокой скоростью. Этот компьютер стал первым программируемым компьютером в истории, правда его программирование осуществлялось на примитивном уровне, с помощью переключателей и электрических проводников, замыкающих определенные контакты на специальных кросс-панелях. Процессор компьютера, составленный из 2500 электронных ламп и тиратронов мог выполнять статистические вычисления на тактовой частоте в 6 МГц, и это в 1944 году!
Компьютер Colossus не имел электронной памяти, все его данные хранились на замкнутой перфоленте, которая двигалась в считывающем устройстве со скоростью 80 км/ч. При такой скорости компьютер мог считать и обработать только 5000 символов в секунду, хотя производительности процессора хватало и на обработку большего потока данных. На выходе компьютер давал данные о вероятной настройке колес шифровальной машины, сокращая время дешифровки сообщения до нескольких часов вместо нескольких недель, которые потребовались бы для ручного взлома сообщения.
Естественно, компьютер Colossus был секретным компьютером, коим он и оставался спустя много лет после завершения Второй Мировой войны. По директиве Уинстона Черчилля все компьютеры Colossus были демонтированы, а их чертежи и схемы были уничтожены. Только в конце 70-х начали появляться скудные сведения о компьютерах Colossus, а в 1993 году собралась команда из разработчиков, принимавших участие в создании первых компьютеров Colossus. И, к 1996 году начал работу «восставший из пепла» компьютер Colossus.
История электронных компьютеров, часть 2: Колосс
Танни
Летом 1941 года в Блетчли уже вовсю велись работы по взлому знаменитой шифровальной машины Энигма, использовавшейся немецкими армией и флотом. Если вы смотрели фильм про британских взломщиков шифров, то там рассказывали про Энигму, но мы не будем тут о ней распространяться — поскольку вскоре после вторжения в Советский союз в Блетчли обнаружили передачу сообщений с новым типом шифрования.
Криптоаналитики довольно скоро разгадали общую природу использованной для передачи сообщений машины, которую они прозвали «Танни».
В отличие от Энигмы, сообщения которой нужно было расшифровывать вручную, Танни напрямую подключалась к телетайпу. Телетайп преобразовывал каждый введённый оператором символ в поток точек и крестиков (похожий на точки и тире азбуки Морзе) в стандартном коде Бодо с пятью символами на букву. Это был незашифрованный текст. Танни одновременно использовала двенадцать колёсиков для создания собственного параллельного потока точек и крестиков: ключа. Затем она добавляла ключ к сообщению, выдавая зашифрованный текст, передаваемый по воздуху. Сложение производилось в двоичной арифметике, где точки соответствовали нулям, а крестики — единичкам:
0 + 0 = 0
0 + 1 = 1
1 + 1 = 0
Другая Танни на стороне получателя с теми же настройками выдавала тот же ключ и добавляла его к зашифрованному сообщению, чтобы выдать изначальное, которое печаталось на бумаге телетайпом получателя. Допустим, у нас есть сообщение: «точка плюс точка точка плюс». В цифрах это будет 01001. Добавим случайный ключ: 11010. 1 + 0 = 1, 1 + 1 = 0, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, так что мы получим зашифрованный текст 10011. Вновь добавляя ключ, можно восстановить изначальное сообщение. Проверим: 1 + 1 = 0, 1 + 0 = 1, 0 + 0 = 0, 1 + 1 = 0, 0 + 1 = 1, получаем 01001.
Разбор работы Танни облегчался тем фактом, что в ранние месяцы её использования отправители передавали настройки колёс, которые надо использовать перед отправкой сообщения. Позже немцы выпустили кодовые книги с предварительно заданными настройками колёс, и отправителю нужно было только отправить код, по которому получатель мог найти нужную настройку колеса в книжке. В итоге они стали менять кодовые книги ежедневно, из-за чего Блетчли приходилось взламывать настройки кодовых колёс каждое утро.
Интересно, что криптоаналитики разгадали функцию Танни на основе расположения отправляющих и принимающих станций. Она соединяла нервные центры высшего немецкого командования с армией и командирами армейских групп на различных европейских военных фронтах, от оккупированной Франции до русских степей. Это была соблазнительная задача: взлом Танни обещал прямой доступ к намерениям и возможностям врага на высшем уровне.
Затем, благодаря сочетанию ошибок немецких операторов, хитрости и упорной решительности, молодой математик Уильям Тат продвинулся гораздо дальше простых выводов о работе Танни. Не видев саму машину, он полностью определил её внутреннюю структуру. Он логически вывел возможные позиции каждого колеса (у каждого из которых было своё простое число), и то, как именно расположение колёс генерировало ключ. Вооружившись этой информацией, в Блетчли построили копии Танни, которые можно было использовать для расшифровки сообщений — сразу после правильной настройки колёс.
12 колёс ключа машины, использующей шифр Лоренца, известной, как Танни
Хит Робинсон
К концу 1942 года Тат продолжал атаковать Танни, разработав для этого специальную стратегию. Она была основана на концепции дельты: сумма по модулю 2 одного сигнала в сообщении (точки или крестика, 0 или 1) со следующим. Он понял, что из-за прерывистого движения колёс Танни существовала связь между дельтой зашифрованного текста и дельтой текста ключа: они должны были меняться совместно. Так что если сравнить шифрованный текст с ключевым текстом, созданным на разных настройках колёс, можно вычислить дельту для каждого и подсчитать количество совпадений. Сильно превышающее 50% количество совпадений должно отметить потенциального кандидата на реальный ключ сообщения. В теории идея была хорошей, но её невозможно было воплотить на практике, поскольку это требовало сделать 2400 проходов для каждого сообщения, чтобы проверить все возможные настройки.
Тат принёс эту задачу другому математику, Максу Ньюману, руководившему отделом в Блетчли, который все называли «ньюманией». Ньюман, на первый взгляд, был маловероятной кандидатурой на руководство чувствительной британской разведывательной организацией, поскольку его отец был родом из Германии. Однако казалось маловероятным, что он будет шпионить в пользу Гитлера, поскольку его семья была еврейской. Он так сильно был обеспокоен прогрессом доминирования Гитлера в Европе, что перевёз свою семью в безопасное место, в Нью-Йорк, вскоре после коллапса Франции в 1940-м, и какое-то время сам думал о переезде в Принстон.
Макс Ньюман
Так получилось, что у Ньюмана была идея о работе над расчётами, требовавшимися методу Тата — посредством создания машины. В Блетчли уже привыкли использовать машины для криптоанализа. Именно так была взломана Энигма. Но Ньюман задумал определённое электронное устройство для работы над шифром Танни. До войны он преподавал в Кембридже (одним из его студентов был Алан Тьюринг), и знал об электронных счётчиках, построенных Уинном-Уильямсом для подсчёта частиц в Кавендише. Идея была в следующем: если синхронизировать две замкнутые в петлю плёнки, прокручивающиеся с большой скоростью, на одной из которых будет ключ, а на другой — зашифрованное сообщение, и считать каждый элемент обработчиком, который подсчитывает дельты, то электронный счётчик мог бы суммировать результаты. Прочитав итоговый счёт в конце каждого пробега можно было решать, потенциальный ли этот ключ, или нет.
Случилось так, что группа инженеров с подходящим опытом как раз существовала. Среди них был и сам Уинн-Уиьлямс. Тьюринг завербовал Уинна-Уильямса из радарной лаборатории в Мэлверне, чтобы тот помог создать новый ротор для машины, расшифровывающей Энигму, использующий электронику для подсчёта поворотов. Ему с этим и другим проектом, относившемся к Энигме, помогали три инженера из Почтовой исследовательской станции в Доллис-Хилл: Уильям Чандлер, Сидни Бродхерст и Томми Флауэрс (напомню, что Британская почта была высокотехнологичной организацией, и отвечала не только за бумажную почту, но и за телеграфию и телефонию). Оба проекта провалились и мужчины остались без дела. Ньюман собрал их. Он назначил Флауэрса ведущим команды, создававшей «комбинирующее устройство», которое должно было подсчитывать дельты и передавать результат на счётчик, над которым работал Уинн-Уильямс.
Ньюман занял инженеров постройкой машин, а Женский отдел королевского флота — управлением его машинами для обработки сообщений. Правительство доверяло высокие руководящие посты только мужчинам, а женщины хорошо справлялись, работая операционистками в Блетчли — они занимались как транскрипцией сообщений, так и декодирующими настройками. У них очень органично получилось перейти от канцелярской работы к заботе о машинах, автоматизировавших их работу. Свою подопечную машину они легкомысленно назвали «Хитом Робинсоном», британским эквивалентом Руба Голдберга [оба были иллюстраторами-карикатуристами, изображавшими чрезвычайно сложные, громоздкие и запутанные устройства, выполнявшие очень простые функции / прим. перев.].
Машина «Старый Робинсон», очень похожая на своего предшественника, машину «Хит Робинсон»
И действительно, «Хит Робинсон», в теории достаточно надёжный, на практике страдал от серьёзных проблем. Основной была необходимость идеальной синхронизации двух плёнок — шифрованного текста и текста ключа. Любое растяжение или соскальзывание любой из плёнок приводило в негодность весь проход. Чтобы минимизировать риск ошибок, машина обрабатывала не более 2000 символов в секунду, хотя ремни могли работать и быстрее. Флауэрс, нехотя соглашавшийся с работой проекта «Хит Робинсон», считал, что есть способ лучше: машина, почти полностью построенная из электронных компонентов.
Колосс
Томас Флауэрс работал инженером в исследовательском отделении британской почты с 1930, где он изначально трудился над исследованием неправильных и несостоявшихся соединений в новых автоматических телефонных станциях. Это привело его к размышлениям на тему того, как создать улучшенную версию телефонной системы, и к 1935 году он стал проповедовать замену электромеханических компонентов системы, таких, как реле, на электронные. Эта цель определила всю его дальнейшую карьеру.
Томми Флауэрс, в районе 1940
Большая часть инженеров критиковала электронные компоненты за их капризность и ненадёжность при использовании в больших масштабах, но Флауэрс показал, что если использовать их беспрерывно и на мощностях гораздо ниже расчётных, электронные лампы на самом деле демонстрируют поразительно долгое время службы. Он доказал свои идеи, заменив все терминалы, устанавливавшие тональный сигнал связи на коммутаторе, обслуживавшем 1000 линий, лампами; всего их там было 3-4 тысячи. Эта инсталляция была запущена в реальную работу в 1939-м. В тот же период он экспериментировал над заменой релейных регистров, хранящих телефонные номера, электронными реле.
Флауэрс считал, что «Хит Робинсон», для создания которого его наняли, обладал серьёзными недостатками, и что он сможет гораздо лучше решить эту задачу, используя больше ламп и меньше механических частей. В феврале 1943 года он принёс альтернативную схему машины Ньюману. Флауэрс хитроумно избавился от плёнки с ключом, устранив проблему синхронизации. Его машина должна была генерировать текст ключа на лету. Она должна была симулировать Танни электронным образом, проходя через все настройки колёс и сравнивая каждое из них с зашифрованным текстом, записывая вероятные совпадения. Он рассчитывал, что такой подход потребует использования около 1500 электронных ламп.
Ньюман и остальное руководство Блетчли скептически отнеслись к этому предложению. Как большинство современников Флауэрса, они сомневались, можно ли заставить электронику работать на таких масштабах. Кроме того, даже если её можно заставить работать, они сомневались, что такую машину можно будет построить вовремя, чтобы она пригодилась в войне.
Начальник Флауэрса в Доллис-Хилл всё же дал ему добро на сбор команды для создания этого электронного монстра — Флауэрс, возможно, не совсем искренне описал ему, насколько его идея понравилась в Блетчли (Если верить Эндрю Ходжесу, Флауэрс сказал своему боссу, Гордону Рэдли, что проект был критической для Блетчли работой, а Рэдли уже слышал от Черчилля, что работа Блетчли была абсолютно приоритетной). Кроме Флауэрса, в разработке системы большую роль сыграли Сидни Броадхерст и Уильям Чандлер, а вся затея заняла работой почти 50 человек, половину ресурсов Доллис-Хилл. Команда вдохновлялась прецедентами, использовавшимися в телефонии: счётчиками, ветвящейся логикой, оборудованием для роутинга и перевода сигналов, и аппаратурой для периодических измерений состояния оборудования. Броатхерст был мастером таких электромеханических схем, а Флауэрс и Чандлер были экспертами в электронике, понимавшими, как перенести концепции из мира реле в мир клапанов. К началу 1944 команда представила работающую модель в Блетчли. Гигантская машина получила наименование «Колосс», и быстро доказала, что может затмить «Хита Робинсона», надёжным образом обрабатывая по 5000 символов в секунду.
Ньюман и остальное руководство в Блетчли быстро поняли, что ошиблись, отказав Флауэрсу. В феврале 1944-го они заказали ещё 12 «Колоссов», которые должны были встать в строй к 1 июня — на эту дату планировалось вторжение во Францию, хотя, конечно, Флауэрсу это было неизвестно. Флауэрс прямо сказал, что это невозможно, но приложив героические усилия, его команде удалось поставить вторую машину к 31 мая, в которую новый член команды, Алан Кумбс, вносил множество усовершенствований.
Переработанная схема, известная, как Mark II, продолжила успех первой машины. Кроме системы подачи плёнки, она состояла из 2400 ламп, 12 поворотных выключателей, 800 реле и электрической пишущей машинки.
Colossus Mark II
Она была настраиваемой и достаточно гибкой для того, чтобы выполнять различные задачи. После установки каждая из женских команд настроили своего «Колосса» для решения определённых проблем. Коммутационная панель, похожая на панель для работы телефонного оператора, была нужна для настройки электронных колец, симулировавших колёса Танни. Набор переключателей позволял операторам настраивать любое количество функциональных аппаратов, обрабатывавших два потока данных: внешнюю плёнку и внутренний сигнал, генерировавшийся кольцами. Комбинируя набор из разных логических элементов, «Колосс» мог заниматься расчётами произвольных булевых функций на основе данных, то есть, таких функций, которые выдавали бы 0 или 1. Каждая единица увеличивала счётчик «Колосса». Отдельный управляющий аппарат делал ветвящиеся решения на основе состояния счётчика — например, остановиться, и распечатать вывод, если значение счётчика превысило 1000.
Панель переключателей для настройки «Колосса»
Не стоит, однако, считать, что «Колосс» был программируемым компьютером общего назначения в современном смысле. Он мог логически комбинировать два потока данных — один на плёнке, и один, сгенерированный кольцевыми счётчиками — и подсчитывать количество встреченных единичек, и всё. Большая часть «программирования» «Колосса» проходила на бумаге, и операторы выполняли дерево решений, подготовленное аналитиками: допустим, «если вывод системы меньше X, настроить конфигурацию B и выполнить Y, а иначе выполнить Z».
Блок-схема высокого уровня для «Колосса»
Тем не менее, «Колосс» был вполне в состоянии решать поставленную перед ним задачу. В отличие от компьютера Атанасова-Берри, «Колосс» был чрезвычайно быстрым — он мог обрабатывать 25000 символов в секунду, каждый из которых мог потребовать выполнения нескольких булевых операций. Mark II пятикратно увеличил скорость по сравнению с Mark I, одновременно считывая и обрабатывая пять различных участков плёнки. В нём отказались связывать всю систему с медленными электромеханическими устройствами ввода-вывода, использовав фотоэлементы (взятые с противовоздушных радиовзрывателей) для чтения входящих плёнок и реестр для буферизации вывода на пишущую машинку. Лидер команды, восстанавливавшей «Колосса» в 1990-х, показал, что в своём деле он всё ещё легко мог обогнать по производительности компьютер на базе процессора Pentium 1995 года.
Эта мощная машина для обработки текста стала центром проекта по взлому кода Танни. До конца войны было построено ещё десять Mark II, панели для которых штамповали по одной штуке в месяц работники почтовой фабрики в Бирмингеме, не имевшие понятия, что именно они производят, а затем их собирали в Блетчли. Один раздражённый чиновник из Министерства снабжения, получив очередной запрос на тысячу особых клапанов, поинтересовался, не «стреляют ли работники почты ими в немцев». Таким индустриальным способом, а не ручной сборкой индивидуального проекта, следующий компьютер будет производится не ранее 1950-х. По инструкции Флауэрса для предохранения клапанов каждый «Колосс» работал днём и ночью до самого конца войны. Они стояли, тихо светясь в темноте, разогревая влажную британскую зиму и терпеливо ожидая инструкций, пока не пришёл тот день, когда в них больше не было нужды.
Завеса молчания
С другой стороны, технологические достижения, которые представил «Колосс», были неоспоримы. Но мир ещё не скоро это узнает. Черчилль приказал, чтобы всех существовавших на момент окончания игры «Колоссов» разобрали, и отправили секрет их устройства вместе с ними на свалку. Две машины каким-то образом пережили этот смертный приговор, и оставались в строю британской разведки до 1960-х. Но и тогда британское правительство не приподняло завесу молчания по поводу работы в Блетчли. Только в 1970-х его существование стало достоянием общественности.
Решение навсегда запретить всякое обсуждение проводимых в Блетчли-парк работ можно было назвать чрезмерной осторожностью британского правительства. Но для Флауэрса это было личной трагедией. Лишённый всех заслуг и престижа изобретателя «Колосса», он страдал от неудовлетворённости и разочарования, когда его постоянные попытки заменить реле электроникой в британской телефонной системе постоянно блокировались. Если бы он мог продемонстрировать своё достижение на примере «Колосса», у него было бы влияние, необходимое для реализации его мечты. Но к тому времени, когда его достижения стали известны, Флауэрс уже давно ушёл на пенсию и не мог ни на что повлиять.
Несколько разбросанных по миру энтузиастов электронных вычислений страдали от похожих проблем, связанных с секретностью, окружавшей «Колосса», и недостатка доказательств жизнеспособности этого подхода. Электромеханические вычисления могли оставаться главными ещё какое-то время. Но существовал ещё один проект, который проложит путь к приходу на главенствующую позицию электронных вычислений. Хотя это также был результат секретных военных разработок, его не стали утаивать после войны, а наоборот, открыли миру с величайшим апломбом, под именем ENIAC.
ЭВМ: ЧТО? ГДЕ? КОГДА? | Colossus
Начинается история возникновения Colossus с 1940 года. Британская спецслужба занимались поиском шпионов на территории страны и во время прослушивания радиоэфира сотрудникам удалось перехватить необычную шифрованную немецкую радиопередачу. Вместо привычного кода Морзе, сообщения были зашифрованы с помощью телеграфного кода Бодо. Материал отправили на анализ в Правительственную школу кодов и шифров (Government Code and Cypher School) в Блечли-Парк. Новый шифр стали называть «Танни» (англ. tunny — тунец), а сама криптосистема получила условное наименование FISH.
Для детального изучения выявленного шифра в Блечли-Парк создали специальное подразделение, которое занималось сугубо анализом «Танни». Процесс расшифровки продвигался крайне медленно до 1941 года, когда один из немецких шифровальщиков допустил серьезную ошибку. Он среагировал на просьбу повторно передать сообщение длинною около 4500 знаков на том же ключе, но во второй раз немного сократил исходный текст. Англичане перехватили обе радиограммы, что позволило им не только дешифровать телеграмму, но и получить длинную шифрующую последовательность. В результате проведенной работы специалисты выяснили, что немецкое устройство построено на принципе шифрующих колес, которых насчитывалось 12.
Уильям Томас Татт (1917 — 2002 гг.)
На основе добытой информации можно было вручную расшифровывать некоторые сообщения «Танни». Молодой математик Уильям Томас Тат (William Thomas Tutte) занялся взломом кода машины. С использованием метода криптоанализа полиалфавитных шифров Касиски (поиск групп символов, что повторяются в зашифрованном тексте) он выяснил, что длина ключевого слова равна сорока одному символу. Тат назвал компоненту «chi_1». Учитывая сложность устройства ключа, существовала и другая компонента «psi_1». В результате машина состояла из дисков «psi» и «chi», генерирующих каждые пять бит символа. Компоненты ключа объединялись функцией XOR и выходило, что ключ K можно было представить для каждого символа таким образом: « K = chi oplus psi ».
Машина Lorenz SZ42
Проведенная Татом работа дала возможность исследовательской группы Блетчли-парка за несколько месяцев восстановить логическую структуру шифровальной машины. Переписку подобного рода можно было вскрывать и читать. Но этот процесс занимал слишком много времени, требовал трудоемких вычислений и казался малоэффективным. На обработку одной телеграммы уходило до нескольких недель ручного труда. Для быстрой расшифровки требовалось построить соответствующее устройство.
Томми Флоуэрс (1905 — 1998 гг.)
В 1943 году Томми Флоуэрсом (Tommy Flowers) и Френком Мореллом (Frank Morell) из Исследовательской станции Центрального почтамта (General Post Office) в Доллис Хилл была построена специальная машина Heath Robinson (названа в честь популярного героя комиксов — персонажа-изобретателя странных механизмов). Машина имела скоростной ввод с перфолент и электронные логические схемы, она занималась вычислением положения дисков Lorenz. Heath Robinson позволила расшифровывать сообщения «Танни», но не отличалась особой надежностью и работала недостаточно быстро.
Машина Heath Robinson
Главная проблема заключалась в точной синхронизации двух перфолент, на одной из которых находилось германское шифрованное сообщение, а на второй были набиты циклически повторяющиеся последовательности битов, порождаемые штифтовыми комбинациями вскрытых дисков шифратора. И, несмотря на то, что оптомеханический считыватель обрабатывал пару перфолент с довольно высокой скоростью, бумага перфоленты растягивалась и приводила к сбоям синхронизации, ошибкам в вычислениях.
Макс Ньюман (1897 — 1984 гг.)
Расшифровка требовала ускоренной автоматизации, поэтому в Блетчли-парке было создано специальное подразделение, которое возглавил известный английский математик Макс Ньюман (Max Newman). В 1943 году сотрудники данной структуры совместно с Томми Флауэрсом спроектировали принципиально новую дешифровальную машину, которая получила название Colossus.
С 1944 года с помощью Colossus полным ходом проводилось дешифрование и вскрытие переписки высшего эшелона германского военного командования. Благодаря быстродействию надежного электронного компьютера время расшифровки сообщений с нескольких недель сократилось всего до 2-3 часов. Colossus являлся самым большим компьютером того времени, он использовал мощность 1500 электронных ламп и позволял обрабатывать 5000 знаков в секунду. Из-за особенности работы электрических ламп, однажды запущенные в работу компьютеры, не выключались до окончания Второй Мировой. Устройство обладало очень ограниченной памятью, поэтому лента сообщения читалась по кругу, чтобы обеспечить непрерывный цифровой поток данных. Colossus за пять секунд мог считать сообщение длинной на 25000 символов, занимающие до 10 страниц печатного текста.
Colossus проводил сравнение двух канальных элемента символа из сообщения с эквивалентными элементами из потока ключа. Каждый раз, когда сообщение с ленты начинало читаться заново, ключ продвигался на одну позицию. При нахождении устройством соответствия, ключ считался правильным для этой позиции и для него начислялось одно «очко». Спустя 4-5 минут электронный счётчик начинал складывать очки. На переднюю ламповую панель выводились единицы, десятки, сотни и тысячи. После того, как счет становился достаточно большим, печатающее устройство распечатывало соответствующие позиции дисков для ключа, который дал такой счет.
Работа операторов на Colossus
Если перевести на современные компьютеры, то производительность Colossus соответствовала бы процессору с частотой примерно 5,8 МГц. Но все же, Colossus нельзя назвать полноценным компьютером. В этом секретном устройстве имелись электронные схемы, выполнявшие цифровые функции, но не было электронной памяти. Данные хранились на замкнутой перфоленте, которая двигалась со скоростью 80 км/час.
Использование Colossus помогло расшифровать в общей сложности свыше 63 миллионов знаков перехваченных телеграмм немецкого верховного командования.
Colossus Mark II
В 1945 году успех компьютеров Colossus начал постепенно угасать. Столь крупные машины по 2-3 м высотой и суммарной длиной около 5,5 м, представляющие комплекс из 8 крупных двухсторонних монтажных стоек разной ширины, были специализированы под определенные задачи и не отличались универсальностью. Кроме того высшее британское руководство всячески старалось скрыть от СССР свои мощные дешифровальные возможности. В следствии чего, по личному указанию Уинстона Черчилля, Colossus разобрали по частям и скрыли под печатью «секретно». За 1945 год полностью демонтировали восемь из десяти машин.
Две оставшиеся модели отправили сперва в Лондон, а затем в город Челтнем. Они перешли в пользование к криптографической спецслужбе Великобритании — Центру правительственной связи (Government Communications Headquarters, GCHQ). Компьютеры тайно использовались еще полтора десятка лет для тренировочных и вспомогательных криптографических задач. Но до 60-х годов разобрали и две последние модели. Помимо этого были уничтожены схемы-чертежи компьютеров Colossus. Проект содержался в строжайшей тайне еще долгие годы.
Кое-какие обрывочные сведения о Colossus стали понемногу появляться в газетах с середины 70-х годов.
И в 1994 году группа инженеров-энтузиастов во главе с Тони Сейлом (Tony Sale) занялась воспроизведением работоспособной копии этой машины, используя немногочисленные фотографии, а также записи, рассказы и эскизы от оставшихся в живых участников проекта. Восстановление Colossus проходило в блоке F Блетчли-парка. Первое видео с работающей моделью было записано уже в 1997 году. Но полностью восстановить компьютер удалось только к 2008 году.
Тони Сейл (1931 – 2011 гг.)
По словам Тони Сейла, восстановленная модель Colossus расшифровывала сообщения примерно со скоростью ноутбук с процессором Pentium 2 и необходимым ПО. И это при учете такой солидной разницы во времени.
В 2000 году власти Великобритании официально рассекретили технический отчет 1945 года о вскрытии шифра и машинах Colossus. Объемный документ спецслужба GCHQ передала в общедоступный Государственный архив (Public Record Office) в городе Кью.
Национальный музей компьютеров
Благодаря восстановлению Colossus в 2007 году открылся Национальный музей компьютеров (The National Museum of Computing), который также находится в Блетчли-парке.
Мифы о британском Colossus
Учитывая секретность проекта и отсутствие полной информации по данному устройству, пробелы в его истории постепенно заполнились разными мифами. Ниже представлено опровержение к четырем из них.
Colossus создавался не для взлома ключей «Энигмы», а для вскрытия телеграфного шифратора Lorenz SZ, служившего для личной секретной переписки Гитлера с членами высшего командования Третьего Рейха.