Разрывная машина своими руками
Универсальная машина для проведения испытаний своими руками ч.1
В продолжение тем (первая, вторая) про испытательные машины, хочу собрать бюджетный вариант машины консольного типа, на небольшую нагрузку (20 кг), для испытания различных материалов…
После написания предыдущих двух статей на эту тему, мне были заданы вопросы, связанные с модернизацией и разработкой. Это подтолкнуло меня к написанию статьи. Она будет состоять из двух частей – в этой я расскажу о механической части, а вторая будет посвящена электронике, программному обеспечению и обработке полученных данных.
Кинематическую схему решил взять консольного типа, так как она проще в реализации и меньше по габаритам (в сравнении с двухколонной машиной) при одних и тех же закладываемых характеристиках, но конструктивно она чуть слабее.
Я заложил следующие основные характеристики для своей машины: максимальная нагрузочная способность 20 кг или 200 Н, а максимальный рабочий ход 600 мм.
Приступив к конструированию, определился с основными материалами изготовления деталей машины. Цилиндрические направляющие 20 диаметра и каретки к ним решил купить, не изобретая велосипеда. В качестве перемещающего механизма взял строительную шпильку и гайку с резьбой М20 шагом 2,5 мм. Соединительные плиты силовой рамы, включая основание машины, было решено изготовить из фанеры толщиной 20 мм.
Небольшое отступление для тех, кто начал смеяться: данный проект планируется быть, достаточно бюджетным, и нужен для отработки схемы использования выбранной электроники и разработки программы для управления и обработки данных на персональном компьютере.
Использование в конструкции трапециидального винта или ШВП винта, а также в место фанеры — дюраль или сталь, значительно увеличит стоимость машины, а я все же ее не для продажи делаю, а для повторения сего проекта, теми, кто нуждается в подобном силоизмерительном агрегате. Кто, какую кинематическую схему будет использовать и из, каких комплектующих дело лично каждого.
Накидал проект в Компас-е, только основные детали, с технологией изготовления которых сразу определился. В виду того, что у меня есть фрезерный станок с ЧПУ почти все компоненты машины изготовленные из фанеры решил обработать на нем.
Разложил все плоские детали в двумерной проекции, сохранил их в векторном формате (*.dxf). Через постпроцессор в CAM программе перевел рисунки в G-code. Станок вырезал все детали за одну установку заготовки, так как размеры его рабочего поля позволяют. Обработав углы наждачной бумагой, все сопрягаемые детали подошли очень хорошо друг к другу.
Направляющие и шпилька были обработаны на токарном станке. Как мы не старались сделать шпильку без биения, она все равно осталась кривой.
После предварительной сборки силовой рамы, стало видно что требуется усилить крепление цилиндрических направляющих к верхней и нижней плитам. Для этого потребовались дополнительные опоры, но покупать их накладно, а вот изготовить их из пластика на 3D принтере самое оно.
Подобрал по каталогу опоры под диаметр моих направляющих, по имеющимся размерам нарисовал их в 3D, все в том же Компас-е.
Друг дал на временное пользование 3D принтер, за пару дней я успел напечатать все опоры и еще несколько дополнительных деталей. Напечатанные опоры встали очень плотно, и это придало всей конструкции хорошую жесткость.
На обработанные концы шпильки, по посадке надел шариковые радиальные подшипники. В нижней части подшипники между нижней плитой стянул гайкой. По-правильному, надо использовать опорные подшипники или конические.
В качестве силовой установки решил использовать мотор редуктор от стеклоподъемников автомобиля ВАЗ 2110, он создает хороший крутящий момент. Предположил, что его хватит, для того чтобы прокрутить шпильку, нагруженную двадцатью килограммами.
Выходной вал мотор — редуктора квадратного сечения 7х7 мм., для соединения его с хвостом шпильки пришлось напечатать муфту.
Что касается работы двигателя применительно испытательной машины, то для проведения корректного испытания, скорость нагрузки должна практически не изменяться. В современных двигательных системах это реализовано в электронных приводах управления. В моем же случае чтобы во время нагрузки скорость движения подвижной плиты не уменьшалась, двигатель должен иметь такую мощность, чтобы не замечать возрастающую на него нагрузку, либо реализовывать это программно, поднимая мощность. Но в таком случае требуется иметь обратную связь, чтобы контролировать скорость.
Для измерения расстояния перемещения подвижной плиты, я решил установить энкодер на 24 импульса за оборот, это позволит измерять расстояние с точностью 0,1мм, этого более чем достаточно, учитывая что в сочленении шпилька / гайка имеется люфт. Надеюсь, что энкодер поможет мне в измерении реальной скорости движения. Датчик решил вынести в сторону, напечатав две шестеренки с передаточным отношением один к одному, а также кронштейн для крепления его к торцу несущей плиты мотор – редуктора. После печати, шестеренки получились немного восьмеркой, но это не страшно, главное, что между ними есть зацепление.
Машина получилась с двумя рабочими зонами, нижней и верхней. Датчик силы на 20 кг, как и собранная машина, консольного типа, его я установил в нижней части, чтобы не мешались провода в случае крепления на подвижной или верхней плите.
Первая часть на этом подошла к концу, приятного чтения, друзья!
Разрывная машина своими руками
В продолжение тем про испытательные машины, хочу собрать бюджетный вариант машины консольного типа, на небольшую нагрузку (20 кг), для испытания различных материалов…
После написания предыдущих двух статей на эту тему, мне были заданы вопросы, связанные с модернизацией и разработкой. Это подтолкнуло меня к написанию статьи. Она будет состоять из двух частей – в этой я расскажу о механической части, а вторая будет посвящена электронике, программному обеспечению и обработке полученных данных.
Кинематическую схему решил взять консольного типа, так как она проще в реализации и меньше по габаритам (в сравнении с двухколонной машиной) при одних и тех же закладываемых характеристиках, но конструктивно она чуть слабее.
Я заложил следующие основные характеристики для своей машины: максимальная нагрузочная способность 20 кг или 200 Н, а максимальный рабочий ход 600 мм.
Приступив к конструированию, определился с основными материалами изготовления деталей машины. Цилиндрические направляющие 20 диаметра и каретки к ним решил купить, не изобретая велосипеда. В качестве перемещающего механизма взял строительную шпильку и гайку с резьбой М20 шагом 2,5 мм. Соединительные плиты силовой рамы, включая основание машины, было решено изготовить из фанеры толщиной 20 мм.
Небольшое отступление для тех, кто начал смеяться: данный проект планируется быть, достаточно бюджетным, и нужен для отработки схемы использования выбранной электроники и разработки программы для управления и обработки данных на персональном компьютере.
Использование в конструкции трапециидального винта или ШВП винта, а также в место фанеры — дюраль или сталь, значительно увеличит стоимость машины, а я все же ее не для продажи делаю, а для повторения сего проекта, теми, кто нуждается в подобном силоизмерительном агрегате. Кто, какую кинематическую схему будет использовать и из, каких комплектующих дело лично каждого.
Накидал проект в Компас-е, только основные детали, с технологией изготовления которых сразу определился. В виду того, что у меня есть фрезерный станок с ЧПУ почти все компоненты машины изготовленные из фанеры решил обработать на нем.
Разложил все плоские детали в двумерной проекции, сохранил их в векторном формате (*.dxf). Через постпроцессор в CAM программе перевел рисунки в G-code. Станок вырезал все детали за одну установку заготовки, так как размеры его рабочего поля позволяют. Обработав углы наждачной бумагой, все сопрягаемые детали подошли очень хорошо друг к другу.
Направляющие и шпилька были обработаны на токарном станке. Как мы не старались сделать шпильку без биения, она все равно осталась кривой.
После предварительной сборки силовой рамы, стало видно что требуется усилить крепление цилиндрических направляющих к верхней и нижней плитам. Для этого потребовались дополнительные опоры, но покупать их накладно, а вот изготовить их из пластика на 3D принтере самое оно.
Подобрал по каталогу опоры под диаметр моих направляющих, по имеющимся размерам нарисовал их в 3D, все в том же Компас-е.
Друг дал на временное пользование 3D принтер, за пару дней я успел напечатать все опоры и еще несколько дополнительных деталей. Напечатанные опоры встали очень плотно, и это придало всей конструкции хорошую жесткость.
На обработанные концы шпильки, по посадке надел шариковые радиальные подшипники. В нижней части подшипники между нижней плитой стянул гайкой. По-правильному, надо использовать опорные подшипники или конические.
В качестве силовой установки решил использовать мотор редуктор от стеклоподъемников автомобиля ВАЗ 2110, он создает хороший крутящий момент. Предположил, что его хватит, для того чтобы прокрутить шпильку, нагруженную двадцатью килограммами.
Выходной вал мотор — редуктора квадратного сечения 7х7 мм., для соединения его с хвостом шпильки пришлось напечатать муфту.
Что касается работы двигателя применительно испытательной машины, то для проведения корректного испытания, скорость нагрузки должна практически не изменяться. В современных двигательных системах это реализовано в электронных приводах управления. В моем же случае чтобы во время нагрузки скорость движения подвижной плиты не уменьшалась, двигатель должен иметь такую мощность, чтобы не замечать возрастающую на него нагрузку, либо реализовывать это программно, поднимая мощность. Но в таком случае требуется иметь обратную связь, чтобы контролировать скорость.
Для измерения расстояния перемещения подвижной плиты, я решил установить энкодер на 24 импульса за оборот, это позволит измерять расстояние с точностью 0,1мм, этого более чем достаточно, учитывая что в сочленении шпилька / гайка имеется люфт. Надеюсь, что энкодер поможет мне в измерении реальной скорости движения. Датчик решил вынести в сторону, напечатав две шестеренки с передаточным отношением один к одному, а также кронштейн для крепления его к торцу несущей плиты мотор – редуктора. После печати, шестеренки получились немного восьмеркой, но это не страшно, главное, что между ними есть зацепление.
Машина получилась с двумя рабочими зонами, нижней и верхней. Датчик силы на 20 кг, как и собранная машина, консольного типа, его я установил в нижней части, чтобы не мешались провода в случае крепления на подвижной или верхней плите.
Универсальные испытательные машины (разрывные машины)
Сегодня я хочу дать общую информацию о машинах позволяющих проводить испытания и определять физико-механические свойства различных материалов.
Чтобы искусственно воспроизвести эти нагрузки произведенный материал (образец) испытывают, для определения пиковых и номинальных значений работы данного образца.
Испытания проводятся на машинах обеспечивающих определенный тип нагрузки, обычно в Ньютонах (Н). Разрывные машины в основном являются универсальными, так как работают на растяжение и сжатие, и позволяют определять деформацию, упругость, пластичность и многое другое. Но все машины без исключения получают от контроллера три параметра: Нагрузку (Н), Перемещение (мм) и Время (с)
.
Для таких видов нагрузки как крутящий момент специально разработана машина на кручение обеспечивающая вращение образца вдоль своей оси. Изгибающие силы могут быть определены как при испытании на классической разрывной машине, так и при испытании образца на маятниковом копре. Выглядят такие машины как токарный станок с установленным на оси кручения датчика момента.
Часто для определения твердости материала требуется такая машина как твердомер обеспечивающая контроль твердости после производства материала, (например, стали). В зависимости от твердости материала, выбирается тип шкалы: твёрдость более мягких изделий обычно измеряют по шкале Шора или шкале Бринелля; для более твёрдых изделий используют шкалу Роквелла; для совсем твёрдых — шкалу Виккерса.
Еще существуют испытания на усталость и длительную прочность, они в основном проводятся на классических разрывных машинах способных поддерживать образец под постоянной нагрузкой долгое время, и с использованием климатических камер для воссоздания требуемых климатических условий. Единственным отличием от классической разрывной машины является нагрузочная система, выполненная в виде набора грузов, установленных через рычаг. Количество таких машин в лаборатории может достигать десятков штук, а испытания могут длиться от нескольких дней до нескольких недель, месяцев и даже лет.
Существует еще один класс машин: машины трения предназначены для изучения процессов трения и вызванного трением износа, свойств смазочных и фрикционных материалов.
Многие испытательные машины разрабатываются и делаются под заказ так как серийная машина не подходит по тем или иным причинам (габариты испытуемого образца, способ крепления его в захватах, точность измерения, параметры измерения…), заказчиком в основном выступают университеты (если у них хватает финансирования), различные научно-производственные объединения и все те кто может работать не со стандартными материалами.
К любой испытательной машине необходимы захваты для зажима и удержания в процессе испытания образца. Типов захватов очень много, я упомяну некоторые: Тисочные (работают и выглядят также как тиски), клиновые (самозажимные), клещевые (работают и выглядят как клещи). Все захваты со сменными губками под круглые и плоские образцы, а также отличаются насечкой.
Изготовление зиговочного станка в домашних условиях
Самодельная зиг-машина
Надежный зиговочный станок можно сделать, пользуясь предложенными чертежами. Они уже не раз опробованы своими руками и получаются достойные устройства. Можно дополнить предложенный чертеж устройством подъема прижимного вала, подшипниками и креплениями роликов и колес на резьбу.
Станина может быть своими руками выполнена без чертежа в форме скобы из листа или трубы квадратного сечения. Ширина скобы определяет длину валов. Шестеренки ищем на свалке подержанных мотоциклов. Валы вытачиваем уже под готовый внутренний диаметр шестеренок. Под передний подшипник прижимного вала устанавливаем подвижную опору, чтобы проще было вынимать материал.
Но основное внимание при изготовлении станка своими руками нужно уделить вытачиванию и полировке роликов. Можно сразу сделать несколько пар различных профилей. Видеоролик о электромеханическом зиговочном аппарате с дополнительными приспособлениями и замене роликов на нем:
Видеоролик о электромеханическом зиговочном аппарате с дополнительными приспособлениями и замене роликов на нем:
Зиговочная машина — это специализированное оборудование, позволяющее выполнять такую технологическую операцию, как зиговка. Этот метод обработки, которой подвергаются заготовки из листового металла, не представляет особой сложности в технологическом плане, но для осуществления подобной обработки необходимо использование специальных машин. Такое оборудование, представленное на современном рынке большим разнообразием серийных моделей, может быть оснащено ручным, электрическим или гидравлическим приводом. При желании простейший зиговочный станок несложно изготовить своими руками.
Работа зиговочной машины: нанесение двойного круглого фальца на заготовку цилиндрической формы
Технические характеристики ручных вальцов
Диаметр валов — 48 мм. Длина рабочей поверхности вала — 96 мм. Длина рабочей поверхности роликов — 20 мм. Количество сменных роликов — 12 шт. Регулируемый развод валов — 0….5 мм. Габаритные размеры без рукояти — 241х125х245 мм.
Изготовление ручных ювелирных вальцов по чертежам, поможет вам сэкономить 50% от стоимости аналогичных заводских.
Дополнительно вы получаете чертежи пирамиды для растяжки калибровки колец. Поворотом ручки вы сможете придать кольцу нужный размер. Размеры от 13мм до 24,5мм согласно стандартов принятых в Германии и России.
Назначение зиговочных работ
Зиговочные станки широко применяются в сфере металлообработки. С их помощью наносят стыковочные профили, увеличивают прочность металлических изделий, обработки кромок различных деталей из металла.
Процесс зиговки используют:
Последний тип операций из списка позволяет не только сделать детали более прочными, рифление снижает интенсивность скольжения. Зиговка металла также увеличивает эстетичность изделий.
С помощью зиговочного оборудования можно соединить цилиндрические элементы, отбортовать кромки и прокатать ребра жесткости деталей при жестяных работах. Подобный способ обработки заготовок из листового металла технологически несложен. Моделей зиг-машин на рынке представлено много, можно выбрать варианты с разными приводами и стоимостью. А если потратить немного времени, создать простой станок можно самостоятельно.
Область применения
Чаще всего зиговочные станки применяют в строительной сфере. Посредством такого аппарата можно изготовить целый ряд просто незаменимых конструкций: элементы воздуховодных систем, водосточные трубы, запчасти для теплотрасс. В этой сфере деятельности используют в основном ручные зиговочные станки. Они стоят относительно дешево, обладают небольшими габаритами. Кроме того, для их использования не надо подводить электричество.
При помощи зиговочных станков часто обрабатывают детали цилиндрической формы. Ролики такого станка во время прохождения через цилиндр делают на нем специальные замки, к которым и крепятся другие детали. Такой метод обработки оказывает меньшее отрицательное действие на заготовку, чем сварочный процесс. Еще одним преимуществом зиг-машины считают отсутствие необходимости в дополнительных расходных материалах.
Кроме того, классический зиговочный станок может быть усилен дополнительным оборудованием, которое значительно расширит его функциональные возможности. С помощью модифицированной зиг-машины можно выполнять гибку металла, его профилирование. Зиг-машины могут быть ручными и оснащенными автоматизированной системой управления.
Самая популярная конструкция листогиба и ее улучшение
Конструкцию ручного листогибочного станка, показанную на чертеже №1, можно без труда усовершенствовать. По приведенному чертежу видно, что приспособление для гибки листового металла состоит из таких элементов, как:
Чертеж №1: Для постройки нашего листогибочного станка мы применим данную схему
У траверсы листогиба (пункт 7), которую согласно изначальному чертежу предполагается делать из уголка, условно показан вариант исполнения из швеллера. Такая модернизация в разы увеличит выносливость траверсы, которая при использовании уголка в определенный момент неизбежно прогнется посередине и перестанет в этом месте создавать качественный сгиб лист. Замена на швеллер позволит делать не 200 сгибаний без рихтовки или замены данного элемента (что при более-менее активной работе весьма немного), а более 1300.
Чертеж №2: Основные элементы листогиба
Чертеж №2 позволяет более детально разобраться в конструкции самодельного листогиба:
Усиливаем прижимную балку
Ниже мы рассмотрим схему усиления прижимной планки. Однако, если в качестве прижима у вас изначально будет достаточно массивный уголок, а гнуть чрезмерно толстые листы на своем листогибе вы не планируете, то вполне можно обойтись без усиления прижимной планки описанным способом.
Стоит ли связываться с усилением прижима, зависит от условий работы станка
Чтобы продлить срок службы прижимной балки и сделать его сопоставимым со сроком службы траверсы, следует дополнить данный элемент конструкции, который изначально по чертежу выполнен из уголка, основой из металлической полосы с размерами 16х80 мм. Переднему краю данной основы нужно придать угол 45 градусов, чтобы выровнять ее плоскость с плоскостью самого прижимного уголка, а непосредственно рабочей кромке данного элемента следует сделать фаску около 2 миллиметров.
На чертеже №2 полученная деталь в разрезе указана на дополнительном рисунке вверху справа. Эти меры позволят металлу прижима работать не на изгиб (что крайне нежелательно), а на сжатие, тем самым многократно увеличивая срок службы без ремонта.
Также следует позаботиться о фрезеровке нижней плоскости прижимной балки, которая и формирует сгиб. Неровность данной плоскости, согласно общепринятым правилам, не должна превышать половины толщины сгибаемой заготовки. В противном случае согнуть заготовку ровно, без вздувшейся линии сгиба, не получится. Следует иметь в виду, что отдавать балку на фрезеровку следует только тогда, когда на ней уже есть все сварные швы, поскольку их выполнение приводит к изменению геометрических параметров конструкции.
Повышаем надежность креплений станка
В листогибочном станке есть еще один большой недостаток – схема его крепления к рабочему столу. Струбцины, которые предусмотрены в данном приспособлении, являются очень ненадежным вариантом крепления, особенно если учитывать быструю утомляемость сварных швов. От таких крепежных элементов можно вообще отказаться, что также позволит избежать необходимости использования сварных соединений и щек. Решить эту задачу позволяют следующие действия:
Если щек в усовершенствованном листогибочном станке уже не будет, то как к нему прикрепить траверсу? Решить такой вопрос можно достаточно просто: использовать для этого дверные петли-бабочки, которые обычно применяются для навешивания тяжелых металлических дверей. Крепить такие петли, обеспечивающие достаточно высокую точность, можно при помощи винтов с потайной головкой. На чертеже №2 это дополнительно проиллюстрировано внизу справа.
Согнуть на листогибочном станке с траверсой, закрепленной на петли-бабочки, можно множество заготовок, так как эти петли отличаются очень высокой надежностью.
Мастер-класс
каждый из нас – Мастер
Микро-вальцы для умельцев, работающих с проволокой
В творчестве, связанном с проволокой, частенько требуется проволока плоская. Отбивать несколько метров молотком на флахейзене — занятие муторное, и в этом случае могут помочь микро-вальцы.
Материалы: — пара одинаковых подшипников с внешним диаметром от 2,5 до 4 см; — крепежная шпилька (стержень с резьбой), не меньше 20 см длиной; — кусок железной или стальной трубы с диаметром, равным посадочному диаметру подшипника или на 0,1-0,2 мм больше; — несколько одинаковых гаек с резьбой, равной резьбе на шпильке; — металлическая пластина размерами от 40х40 мм.
Инструменты: — дрель; — сверло диаметром 3 или 3,5 мм; — сверло с диаметром, равным диаметру шпильки или больше на 0,5..1 мм; — ножовка по металлу или «болгарка» с отрезным диском по металлу; — тиски; — молоток; — гаечный ключ под имеющиеся гайки.
Общие виды устройства:
Берем подходящую стальную трубу. Диаметр должен быть на 0,1-0,2 мм больше диаметра отверстия подшипника или «совсем впритык» — тогда может понадобиться чем-то заклинить, например, небольшим кусочком тонкой стальной проволоки. Отпиливаем от нее два отрезка, длиной по 50..60 мм. Можно меньше, устройство будет компактнее, но будет сложнее сверлить.
Я купил кухонный релинг, от которого и отрезал подходящие куски. Поскольку релинг был по диаметру больше отверстия подшипника на 2 мм, пришлось сделать широкий пропил по всей длине и «досвернуть» до нужного диаметра. При наличии «болгарки» операция достаточно легка, а вот с ручной ножовкой придется повозиться.
Надеваем на отрезки подшипники, установив их на центр отрезка. Подшипники должны надеваться очень туго, вплоть до набивания их молотком или киянкой.
Если есть верстак с небольшой дыркой (немного больше диаметра оси), то гораздо удобнее вбивать в подшипник ось, а не наоборот.
Берем шпильку диаметром 6..8 мм и отрезаем от нее два куска длиной 10..11 см.
Закрепляем ось с подшипником в тиски и сверлим два отверстия диаметром на 0,5..1 мм больше, чем диаметр шпильки. Сверла малых диаметров обычно идут с шагом 0,5 — поэтому проблем быть не должно.
Чтобы просверлить точно, рекомендую сначала накернить будущее отверстие керном (подойдет и гвоздь для бетона или обычный шуруп), затем просверлить его тонким сверлом (3 мм). Держа дрель вертикально, можно будет сразу этим же сверлом сделать отверстие в противоположной части оси.
При сверлении необходимо как можно более точно соблюсти а) параллельность отверстий друг другу; б) одинаковое расстояние между отверстиями в обеих осях. Почему? Потому что если нарушено «а» — то шпильки не будут стоять в одной плоскости, что помешает установить вторую ось. А если нарушено «б» — то шпильки не будут параллельны друг другу и установить вторую ось тоже будет затруднительно.
Я на этом попался и пришлось дотачивать отверстие в нужную сторону с помощью надфиля.
Берем металлическую пластину, которая будет служить для зажима, и сверлим отверстия в ней. Расстояние между отверстиями должно как можно более точно равняться расстоянию между отверстиями в оси.
Все, детали станка готовы.
1. На каждую шпильку накручивается гайка до 1/3 расстояния. Это будет стопор нижней оси.
Какая из ваших осей будет нижняя, а какая верхняя — ни разу не важно, если соблюдены правила «а» и «б». Если не соблюдены, опять же неважно, потому что собрать конструкцию просто не получится