Как стабилизировать напряжение в авто
Поделки своими руками для автолюбителей
Стабилизатор напряжения в автомобиль
Друзья всем привет. Я хочу поделится с вами электронной поделкой. Стабилизатор напряжения, но не просто стабилизатор, а довольно мощный и надежный линейный стабилизатор.
Я кстати говоря давненько пользуюсь схемой которую я опишу ниже, через данную схему у меня в авто подсоединён радар-детектор, да он имеет встроенную стабилизацию, но один раз она подвела и детектор приказал долго жить. В ремонт я его не понес, а просто выпаял сгоревший стабилизатор и запитал уже от внешнего самодельного стабилизатора и вот уже пару лет всё работает мне на радость.
И вот настал момент когда мне снова понабилась эта схема, но уже не в авто, а для домашних целей. Вообщем мне нужно было запитать УНЧ, напряжение питание которого 18 в от блока питания на 24 в. Основой стабилизатора служит микросхема L7818 (последние две цифры в маркировке это напряжение стабилизации), она способна пропустить через себя ток в 1,5 ампера, но при большом токе она сильно греется и теряет стабильность, что бы облегчить её существование и поднять ток при котором возможно стабилизация, есть очень простая схема.В данной схеме усиление возможно за счет транзистора включенного параллельно микросхеме. Схема очень проста и не требует каких то дефицитных деталей.
Собрал схемы навесным монтажом для тестирования (радиатор обязателен, так как схема линейная и на транзисторе рассеивается большая мощность).То что схема линейная для усилителей даже плюс, нет лишних помех от шим. Убедившись, что схема работает нарисовал плату
Вытравил в растворе перекиси водорода и лимонной кислоты.
Вот какая получилась плата в собранном виде
Так, что кому надо собрать простой стабилизатор для авто, то проще по моему нет))) Схема работает прекрасно, проверено не одним годом эксплуатации.
Автор; Александр Сорокин г. Нижний Новгород
Как сделать простой стабилизатор напряжения на 12 вольт своими руками⚡
В электрической цепи автомобиля часто применяют стабилизатор напряжения 12 вольт. Автомобильные источники питания (аккумуляторная батарея и генератор) различных 12-ти вольтовых электроприборов выдают постоянный ток с напряжением от 12,5 до 14 В. Такие большие колебания способны привести к повреждению и выходу из строя чувствительных и дорогостоящих светодиодных лент, противотуманных фар, магнитол. Помимо электрических систем автомобилей подобные устройства применяются в 12-ти вольтных блоках питания, способных понижать и преобразовывать переменный ток электрической бытовой сети в более подходящий для ряда приборов постоянный.
Разновидности стабилизаторов 12 вольт
В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:
Наиболее распространены и популярны среди автолюбителей линейные устройства, отличающиеся простотой самостоятельной сборки, надежностью и долговечностью. Импульсный вид используется значительно реже из-за дороговизны деталей и сложностей самостоятельного изготовления и ремонта.
Классическая модель
Классические стабилизаторы – это большой класс устройств, собираемых на основе таких полупроводниковых деталей, как биполярные транзисторы и стабилитроны. Среди них основную функцию по поддержанию напряжения на уровне 12 В выполняют стабилитроны – разновидность диодов, подключаемых в обратной полярности (к катоду такого полупроводникового прибора подключается плюс источника питания, к аноду – минус), работающих в режиме пробоя. Суть работы данных полупроводниковых деталей заключается в следующем:
В зависимости от подключения различают два варианта классического стабилизатора: линейный – регулировочные элементы подключаются последовательно нагрузке; параллельный – стабилизирующие напряжение устройства располагаются параллельно запитываемым приборам.
Устройства собирают с использованием небольших по размерам микросхем, способных работать при входном напряжении до 26-30 В, выдавая постоянный 12-ти вольтный ток силой до 1 Ампер. Особенностью данных радиодеталей является наличие 3 ножек – «вход», «выход» и «регулировка». Последняя используется для подключения регулировочного резистора, который используется для настройки микросхемы и предотвращения ее перегрузок.
Более удобные и надежные, собранные на основе стабилизирующих микросхем выравниватели постепенно вытесняют собранные на дискретных элементах аналоги.
Выбор устройства
При выборе стабилизатора учитывают следующие характеристики:
Также при выборе стабилизатора необходимо учитывать отзывы их покупателей, которые можно найти на специализированных форумах и сайтах.
Как сделать 12В стабилизатор
Простые, но при этом достаточно эффективные, надежные и долговечные стабилизирующие устройства можно сделать самостоятельно, используя при этом простые стабилитроны и специальные небольшие микросхемы типа LM317, LD1084, L7812, КРЕН (КР142ЕН8Б).
Стабилизатор на LM317
Процесс сборки такого стабилизирующего напряжение устройства состоит из следующих этапов:
Процесс пайки такого стабилизатора занимает не более 10 минут и с учетом недорогой микросхемы не требует больших капиталовложений. При помощи подобного устройства запитывают светодиодные фонари, ленты.
Микросхема LD1084
Сборка устройства для стабилизации напряжения автомобильной бортовой сети с использованием микросхемы LD1084 производится следующим образом:
Для сглаживания пульсации тока после диодного моста устанавливается еще один электролитический конденсатор емкостью 10 мкф.
Стабилизатор на диодах и плате L7812
Схема стабилизатора 12 В для светодиодов на плате L7812
Простой интегральный выравниватель на диоде Шоттки и двух конденсаторах собирают следующим образом:
От такого простого устройства можно запитывать мощные ленты из светодиодов и магнитолу.
Самый простой стабилизатор — плата КРЕН
Стабилизатор на микросхеме КРЕН
Схема стабилизатор напряжения на 12 вольт на основе платы крен (КР142ЕН8Б) включает в себя следующие компоненты:
Конструкция на плате КРЕН является самой простой и быстрой в сборке. При этом эффективность и область применения у нее такая же, как и у других самодельных аналогов.
Светодиодные лампы в автомобиле: Для чего нужен стабилизатор тока светодиодов и в каких случаях можно без него обойтись. Определение типа стабилизатора в лампе и его наличие.
Очень часто спрашивают и спрашивают об одном и том же. Поэтому попытаемся разобраться с некоторыми вопросами, вызывающими сомнения при выборе светодиодных ламп.
Первый момент: зачем нужен стабилизатор и когда он не нужен.
Очень часто присутствует непонимание, как правильно подключать светодиод. Светодиод- простой, как правило, двухвыводной прибор. И тем не менее многие путаются в терминах и схемах подключения.
Важно запомнить, светодиод питается током, а напряжение на нем падает. Обязательно нужно использовать источник тока: стабилизатор тока или ограничительное сопротивление. При прохождении тока через светодиод на нем падает напряжение, зависящее от типа кристалла светодиода. Например, для белых светодиодов оно равно примерно 3 В, а для красных примерно 2 В.
Часто светодиоды соединяют в последовательные цепочки. Тогда ток через светодиоды протекает один и тот же, а напряжения падения складываются. Так, очень удобно для бортового напряжения 12-14 В использовать по 3 белых светодиода в цепочке и по 4 красных. Напряжение на них тогда упадет до 9 и 8-9 В соответственно. Остаток напряжения должен погасить стабилизатор или сопротивление. В интернете множество онлайн-калькуляторов на данную тему, поэтому в подробности расчета вдаваться не будем.
Поскольку светодиоду нужен ток, то стабилизатор напряжения для питания светодиодов категорически не подходит – подключив напряжение даже 3 В к белому светодиоду добиваются лишь того, что ток стабилизируется на каком-то уровне, соответствующему определенной точке вольтамперной характеристике кристалла. Ток при этом будет также зависеть и от температуры, а его значение может выйти за допустимые пределы.
Часто под названием «светодиод» народ понимает светодиодную лампу целиком. Обычно лампы уже имеют ограничительное сопротивление. В этом случае стабилизатор напряжения не помешает. Особенно для китайских автомобильных ламп, чьи характеристики по каким-то необъяснимым причинам рассчитаны на напряжение 12 В. Однако, лампы со встроенным стабилизатором импульсного типа не нужно дополнительно стабилизировать. Это даже может навредить встроенному стабилизатору. К тому же его нижний порог напряжения может быть около 12 В и приблизившись к нему лампа может мерцать и работать нестабильно.
Особенно требуют стабилизации напряжения светодиодные ленты, рассчитанные, как правило, на 12 В. Ради интереса посчитаем, во сколько раз вырастет ток через светодиоды при превышении бортового напряжения на 2 В (14 В – примерно такое напряжение должно быть при работе исправного генератора). Допустим, ток через светодиоды 100 мА. Тогда сопротивление при 12 В должно быть: (12-3*3)/0,1 = 30 Ом. При 14 В ток будет: (14-3*3)/30 = 167 мА. То есть ток вырос более, чем в полтора раза. При наличии моста или защитного диода ситуация еще больше усугубляется: разница будет примерно в 2 раза.
Конкретно в автомобиле в габаритах и подсветке номерного знака желательно использовать лампы со встроенным стабилизатором тока. Эти лампы чаще всего перегорают, поскольку дольше всех находятся во включенном состоянии. Стабилизатор тока устраняет скачки тока, что способствует долгой жизни кристалла светодиода.
Салонные лампы можно применить менее дорогие – без стабилизатора, с ограничительным резистором. Салон освещается не так часто. Однако лампы без стабилизаторов, как было указано выше в примере расчета, будут сильно отличаться по яркости при остановленном двигателе и при заведенном. Срок службы светодиодов в таких лампах будет меньше, чем в стабилизированных, но для редко включаемых салонных ламп это не критично. В любом случае, оба типа ламп прекрасно работают с блоком комфорта, который обеспечивает плавное их зажигание и гашение.
Еще коснемся вопроса мерцания или свечения ламп в «выключенном» состоянии. Это можно наблюдать у салонных ламп при закрытых дверях в темное время суток. Причина проста: нет физического разрыва питания ламп, которые управляются полупроводниковыми ключами блока комфорта. Через эти ключи в их закрытом состоянии текут микроамперные токи. Лампу накаливания эти токи не могут зажечь, в отличии от светодиода. Чтобы избавиться от этих паразитных явлений (с эстетических соображений, так как микротоки никак не могут разрядить аккумулятор), нужно параллельно лампе подключить небольшое сопротивление 1-10 кОм. Тогда при прохождении тока на сопротивлении, а значит и на лампе будет падать небольшое напряжение, не достаточное для зажигания светодиода.
И последнее. Немного про типы стабилизаторов и о том, как можно определить их тип и наличие. Как было сказано выше, есть стабилизаторы тока и напряжения. Уже из названия ясно, какой параметр они стабилизируют. Также стабилизаторы можно разделить на линейные и импульсные. Линейные не дают помех, но имеют существенный недостаток – весь излишек напряжения будет падать на стабилизаторе и тогда при больших токах на нем будет рассеиваться большая мощность и соответственно будет сильный нагрев. Чтобы уменьшить падение напряжения на стабилизаторе, для автомобильных ламп нужно составлять цепочки из максимального числа светодиодов. Такой тип стабилизатора подходит для маломощных ламп, например, W5W.
Импульсные преобразователи имеют высокий КПД, в среднем свыше 90%. Они преобразуют входное напряжение 12-14 В в нужное нам 3-9 В, стабилизируя при этом ток. При этом, если посчитать мощности на входе и выходе (произведение тока на напряжение), то они будут примерно одинаковы, с учетом потерь в преобразователе. Поскольку вся эта кухня регулируется импульсами (по сравнению с линейными стабилизаторами, в которых ток постоянен), то преобразователь щедро ими делится с питающей сетью и частично в электромагнитном диапазоне. Именно поэтому у дешевых китайских стабилизаторов на основе PT4115 и подобных микросхем часто можно наблюдать шум в радиоэфире и помехи от камеры заднего вида. Наконец, импульсные преобразователи делятся на понижающие (STEP DOWN) и повышающие (STEP UP). Первые самые распространенные, на выходе могут иметь напряжение меньшее входного. Вторые, соответственно – большее. Есть еще и повышающе-понижающие, но они довольно редки.
Чтобы определить наличие стабилизатора в лампе и его тип, нужен амперметр (или мультиметр в режиме измерения тока) и регулируемый блок питания. Очень удобно использовать блок питания со встроенными амперметром и вольтметром. Если блока питания нет, то можно подключать лампу к АКБ и запускать двигатель для изменения напряжения до 14 В. Итак, при увеличении напряжения на 2 В ток и яркость лампы будет меняться по-разному в случаях:
1. Нет стабилизатора – ток вырастает в 1,5-2 раза, яркость меняется значительно.
2. Линейный стабилизатор – ток и яркость не изменяются или увеличиваются незначительно (зависит от схемы включения и типа стабилизатора).
3. Импульсный стабилизатор – ток уменьшается, яркость не изменяется.
Решение проблемы перегорающих светодиодов. Стабилизация напряжения бортовой сети
Увы, бортовая сеть автомобилей B-класса редко подготовлена должным образом для светодиодного освещения. Изложенное ниже является еще одной возможной вариацией решения проблемы сгорающих светодиодных ламп.
Наверняка каждый автовладелец Hyundai Solaris если и не из личного опыта, то со слов других знаком с проблемой постоянно перегорающих светодиодных ламп. К сожалению, штатно нашему автомобилю не полагаются диодные лампы, а значит и бортовая сеть на них не рассчитана. Я лично столкнулся с этой проблемой после установки диодной подсветки заднего номера.
Суть проблемы
На рынке автоэлектрики уже довольно давно изобилуют светодиодные лампы самых разных мощностей под разные цоколи и цели, ассортимент постоянно расширяется, но, увы, это не сильно влияет на качество самих ламп и их адаптацию под автомобили с повышенным напряжением бортовой сети.
Основных причин, по которым светодиодные лампы сначала начинают мерцать, а потом и вовсе сгорают, три:
1. Некачественная пропайка контактов, что приводит к перегреву и выгоранию. Решить эту проблему можно самому подручными средствами (хотя зачастую перепаивание контактов оказывается лишь временной мерой) или просто искать более качественную продукцию от европейских производителей. Всё чаще на рынке встречаются светодиодные лампы с микроконтроллерами, стабилизирующими напряжение. Такие, например, я ставил себе в задний ход.
2. Повышенная температура окружающей среды. Высокая температура может быть вызвана особенностью расположение ламп в осветительном приборе и непосредственной близостью к источнику большого тепла, такого как, например, галогеновая лампа головного света или двигатель. Например, в нелинзованной фаре Hyundai Solaris габаритная лампа близко соседствует с бигалогеновой лампой головного света. При этом температура внутри фары вблизи лампы достигает 90 градусов, что губительно для диодов. Решением такой проблемы может стать только использование термостойких сравнительно дорогих COB-диодов или же термоизоляция от лампы головного света, что крайне сложно реализовать.
3. Повышенное напряжение бортовой сети. Как известно, чем свежее (новее) аккумулятор, тем выше на нём напряжение. На моём годовалом аккумуляторе напряжение 12,75 В, а при запущенном двигателе благодаря генератору оно возрастает аж до 14,55 В. На всех диодных лампах, подходящих нам, вполне четко указано рабочее напряжение 12 В. Увы, зачастую, это не просто рабочее напряжение, а максимально допустимое напряжение. Особенно для китайских и тайваньских ламп, производители которых в буквальном смысле выжимают все соки из несчастных светодиодов, работающих при 12 В на пределе своих возможностей. Ну, а как уже вы догадались, напряжение более 12 В приводит к избыточному току, который убивает светодиоды. Так, за месяц можно успеть поменять несколько ламп и снова обнаружить, что очередной светодиод начал мерцать. Как же быть? Решение именно этой проблемы я хочу осветить подробнее.
Решение
Проблема ясна, теперь о решении. Банально доставив нагрузку в бортовую сеть, тем самым понизив напряжение, мы получим сомнительный эффект, т.к. у светодиодов очень малый диапазон рабочего напряжения (амплитуда составляет в среднем 3-4 В). Таким образом, подобрать нагрузку так, чтобы лампы нормально светили как при запущенном двигателе, так и при заглушенном практически невозможно. В лучшем случае получится крайне тусклый свет при заглушенном и умеренно яркий при включенном, что неприемлемо, а значит нам нужна стабилизация. И в этом случае нам поможет микросхема со стабилизатором напряжения. Эту идею мне подкинул wattawaara, а так же помог с реализацией, за что ему огромное спасибо.
Для тестирования микросхемы я использовал COB-светодиодные лампы (2 Вт, 200 Люменов), заказанные на DealExtreme.
В микросхеме использовался проверенный годами отечественный стабилизатор КР142ЕН8Б, позволяющий стабилизировать напряжение до 12 В при входящем напряжении до 35 В. Обратите внимание, что для этого стабилизатора максимальный ток нагрузки не должен превышать 1.5 А. Кстати, при нагрузке более 1 А стабилизатор начинает существенно греться, а значит на минусовую петлю нужно вешать пассивный радиатор.
Использованные металлоплёночные конденсаторы К73-17 номиналами 0,1 и 0,33 мкФ служат фильтрами, сглаживающими кратковременные пики и шумы, а выпрямительный диод 1N5408 (да-да, он до 1000 В, уж что было под рукой) препятствует возможному обратному паразитному току. Собрать такую схему несложно, все элементы доступны в любом магазине радиоэлектронике. Я все компоненты нашёл в интернет-магазине Чип и Дип. Платой для сборки послужила самая обыкновенная пластина текстолита, найденная на работе. 😉
В моём случае распиновка следующая:
1 (желтый) – входящий «+»;
2 (черный) – входящий «–»;
3 (черный) – выходящий «–»;
4 (красный) – выходящий «+».
Для удобства установки/демонтажа использовался обыкновенный компьютерный разъем питания. Микросхема ставится последовательно в цепь перед конечным потребителем. Продублировал минус сознательно, чтобы при необходимости легко демонтировать всю плату, заменив её заглушкой.
Как видно на фото выше, нужный эффект достигнут – напряжение стабилизированно с 14,1 В до рабочих 11,89 В, что обеспечивает светодиодам продолжительный срок жизни и достаточный уровень яркости. Кстати, потребление этих COB-диодных ламп в сумме не превышает 100 мА при напряжении
12 В. На этом всё, спасибо за внимание!
P.S. Обновление от 02.02.2015
После комментария Дмитрия я всерьез обеспокоился вопросом нестабильности и стал тщательно проверять выходное напряжение. После нескольких часов тестирования могу с уверенностью сказать, что напряжение постоянное, не плавает. Более того, внимательно ознакомившись со спецификацией КР142ЕН8Б (подробнее тут и тут) не нашёл ни единого упоминания о нижнем пороге входного напряжения, меньше которого наблюдается нестабильная работа, есть только ограничение по входному напряжению не более 35 В. Единственный нюанс: при входном напряжении =12 В выходное получается менее 12 В (от 11,55 В до 11,95 В). Сводная таблица результатов тестирования ниже.
P.P.S. Обновление от 12.04.2015
Как оказалось, нет смысла заниматься самостоятельным изобретением плат стабилизации напряжения, всё уже давно сделано качественно и дёшево в Китае. Для стабилизации напряжения бортовой сети продается модуль LM2596 CL2122 (DC-DC конвертер). За счёт фильтров и возможности точной подстройки этот модуль можно считать однозначно лучше самоделки, о которой я писал выше.
Технические характеристики:
Допустимое входное напряжение: 4 В — 35 В;
Выходное напряжение: 1.23 В — 30 В;
Максимальный входной ток: 3 А (рекомендуется подключать потребителя на не более 2,5 А, иначе требуется дополнительное охлаждение);
Эффективность преобразования: 92% (наивысшая);
Частота переключения: 150 кГц;
Максимальная пульсация выходного сигнала: 30 мА (опять же лучше не допускать боле 25 мА);
Производитель: Leivin (Китай).
Как видно по фотографиям качество изготовления вполне приемлемое, достойная заводская пайка, а цена в два раза ниже (на момент покупки
60 р/шт), чем собирать самому плату из компонентов, купленных в розничном магазине радиодеталей. По точности стабилизации нареканий нет.
Сводная таблица результатов тестирования ниже.
Тест проводился следующим образом: подавалось входное напряжение 15 В, регулятор выходного напряжения выставлен так, чтобы выходное напряжение было точно 12 В. Далее с шагом 0,2 В входное напряжение постепенно понижалось до 12 В. Нагрузка была минимальная и обусловлена только сопротивлением мультиметра.
Как видно из сводной таблицы стабилизация заводского модуля куда плавнее и точнее самодельного, а значит рекомендован к внедрению в проводку автомобиля.
Удачи в освещении! Сделаем этот мир чуточку ярче! 😉