Мощность турбины на авто
Двигатель с турбонаддувом. Турбо или атмо, кто быстрее?
Турбо или атмо, кто быстрее?
С тех пор, как начали появляться первые турбины на тюнингованных автомобилях, возникает вопрос — кто быстрее, автомобили с турбонаддувом или атмосферники с большими распредвалами?
Ответ однозначен — правильно собранный турбо мотор не оставит никакого шанса самому «злому атмо».
Самый мощный атмосферный двигатель на данный момент применяется в боллидах Формула-1, с одного литра объёма двигателя снимается около 300 л/с.
От куда же берутся эти лошадиные силы? Ведь обычный мотор внутреннего сгорания имеет около 60 л/с с литра.
Обычный мотор рассчитан на езду в городских условиях, с крутящим моментом на низких оборотах. Такая компоновка имеет свои ограничения в максимальной мощности и скорости. Цилиндры двигателя имеют огромный потенциал для увеличения мощности без увеличения объёма двигателя.
На сколько можно повысить мощность двигателя с помощью турбины? При увеличении наддува на 1 атмосферу, мощность увеличивается примерно на 100%. То есть если двигатель имел изначально 100 л/с, то при давлении турбонаддува 3 атмосферы (3 бар), его мощность возрастёт на 300 л/с. Естественно двигатель должен быть подготовлен к такой нагрузке: резко возрастает тепловой режим работы мотора — повышается температура клапанов, поршней, масла, охлаждающей жидкости, выпускной системы. Эти элементы должны быть доработаны к условиям возросшей температуры. Возрастает нагрузка на поршни, шатуны, коленвал, блок двигателя, сцепление, трансмиссию. Эти элементы автомобиля должны быть подобраны в соответствии с возросшей мощностью.
Степень сжатия на турбо моторах должна быть уменьшена в зависимости от давления наддува. На самом деле высокая степень сжатия с использованием высокооктанового топлива даёт не такую уж большую прибавку мощности, как разница в цене на топливо. При увеличении степени сжатия на единицу — мощность возрастает примерно на 1,5%. Конечно существует топливо с высоким октановым числом — метиловый спирт. Его использование на атмосферном двигателе позволяет применять степень сжатия 1:16, но прибавка мощности с высокооктановым топливом не слишком существенна. Так что не нужно скупиться на уменьшении степени сжатия на турбо моторах, и в моторах с закисью азота. На мощных турбо моторах степень сжатия находится в пределах 7-8, в зависимости от применяемого топлива. Детонация очень разрушает мотор, так что лучше меньше, чем больше.
Широкое распространение в использовании на серийных дизельных и бензиновых двигателях получили турбины Garrett, которые производятся на 14 заводах по всему миру. Они так же активно используются в автоспорте и тюнинге. Имеются турбины Garrett не только с подшипниками скольжения (бронзовые втулки) как на ТКР, но и с шарикоподшипниками, которые имеют обозначение с буквой «R», например GT42R. Шарикоподшипники менее чувствительны к масляному голоданию, повышенным оборотам, имеют меньшее трение, и соответственно быстрее раскручиваются. Так же имеются турбины с каналом для охлаждения подшипника с помощью охлаждающей жидкости, что благоприятно сказывается на их сроке службы.
Турбокомпрессоры произведённые в России и странах СНГ имеют обозначение — ТКР, в Чехии C и K. По типоразмерам практически аналог старых турбин Garrett, но имеют крупную горячую часть, для больше объёмных двигателей. Существует несколько типов, которые отличаются размерами и производительностью, а так же КПД от 43 до 77%. Они используются на дизельных двигателях разной мощности, серийное применение на бензиновых двигателях данных турбин отсутствует.
Возможно ли применение турбин от дизеля на бензиновых двигателях?
Да возможно.
Не сгорят ли лопасти турбины, предназначенной для дизельных двигателей, на бензиновом моторе, ведь температура горения бензина выше чем солярки?
Случаев сгорания лопастей турбины от дизеля на бензиновом двигателе в практике не обнаружено. Температура выхлопных газов прежде всего отдаётся поршням, клапанам, блоку цилиндров, выпускному коллектору, и только потом — турбине.
Турбокомпрессор для тюнинга стоит выбирать по размерам турбинной и компрессорной части. Чем меньше турбинная (горячая) часть, тем раньше начнётся наддув на двигателе. Но маленькая горячая часть на определённых оборотах начнёт «затыкать» двигатель. Для серийных и городских машин это вполне приемлимо.
То же самое можно сказать о компрессорной части, чем меньше, тем раньше затыкает впуск двигателя, и выдаёт относительно небольшое давление наддува.
Но большая компрессорная часть рассчитана на высокий наддув и мощность двигателя, поэтому для городских машин не применяется. Так же большое компрессорное колесо вызывает помпаж на малообъёмных двигателях.
Широкое применение в автотюнинге имеют турбины от японских раллийных автомобилей Mitsubishi TD04, TD05 и TD06, а так же их китайские, более дешёвые аналоги. Турбокомпрессор TD04 применяется на двигателях до 250 л/с, TD05 до 370 л/с, а TD06 до 450 л/с.
▪Расход воздуха турбинами и степень повышения наддува.
На данной схеме представлен расход воздуха турбин Garrett в фунтах/мин и степень повышения давления. Расход воздуха 10 фунтов в минуту равняется примерно 100 л/с конечной мощности двигателя.
Степень повышения давления на картах (абсолютное давление), всегда на единицу больше избыточного давления, которое показывает манометр во впуске.
Каждая турбина имеет определённую производительность накачки воздуха. Максимальное давление наддува получается на оптимальных оборотах ротора, превышать которые не стоит, иначе пострадает подшипник турбины. На данной схеме показана производительность турбин ТКР.
К примеру турбина ТКР-6, которая применяется на машинах типа «Бычок», «Валдай», выдаёт максимально 130 л/с на дизельном двигателе, и 250 л/с на бензиновом.
Имеются экземпляры автомобилей ВАЗ с гибридным турбокомпрессором ТКР 6-7, мощностью свыше 300 л/с. На ТКР-6 диаметр компрессорного колеса 60 мм, а на ТКР-10 соответственно 100 мм, это видно из маркировки турбин.
ТКР рассчитаны на двигатели большого объёма, поэтому есть смысл при применении на бензиновых малообъёмных двигателях составлять гибрид, то есть брать горячую часть от более мелкой турбины, для более ранней раскрутки турбинного вала (спул).
▪Клапан вестгейт (Wastegate).
Обходной клапан вестгейт служит для защиты подшипника турбины и двигателя от разрушения. Поток выхлопных газов старается раскрутить крыльчатку до бесконечности, тем самым нагнетая всё больше и больше воздуха в двигатель. Соответственно воздух увеличивает количество рабочей смеси, увеличивая поток выхлопных газов. Турбина раскручивается ещё быстрее. Получается замкнутый цикл.
Если этот цикл не остановить, турбина набирает обороты гораздо больше максимальных 100000-150000 об/мин, выдавая большое давление наддува. Если двигатель не рассчитан на такое давление, произойдёт детонация, и скорый выход из строя поршней. Так же высокие обороты турбины вызывают помпаж (Surge), это когда воздух уже идёт не в двигатель, а обратно на вход компрессора, с соответствующим звуком.
Обходной клапан бывает двух видов: встроенный и внешний. Встроенный (актуатор) крепится прямо на турбине, и имеет заслонку, которая отводит часть выхлопных газов, при достижении определённого давления, в обход турбины, в глушитель. У него ограниченные возможности, он не может отводить слишком большой поток выхлопных газов.
Внешний клапан выполняет те же функции, но крепится на выпускном коллекторе. При достиженнии заданного давления компрессора, открывается, и начинает стравливать выхлопные газы с выпускного коллектора, в обход турбины — в глушитель, не позволяя раскручиваться турбине больше положенного.
Его так же называют — байпасс, перепускной клапан (Bypass valve). Блоу-офф сбрасывает воздух на улицу (с соответствующим звуком), а байпасс обратно на вход турбины, как правило применяется с ДМРВ. В отличии от вестгейта этот клапан открывается не от давления турбокомпрессора, а от вакуума, который создаётся во впуске при закрытии дроссельной заслонки. Клапан блоу-оф ставится на впускной патрубок, между компрессором и дросселем. А вакуум берётся там же, где и на тормоза: во впускном коллекторе.
Представьте ситуацию: вы разгоняете двигатель, турбина набирает максимальные обороты, давление воздуха во впуске 2,5 атмосферы, поток воздуха на большой скорости поступает в двигатель, и… вы бросаете газ, что бы переключить скорость. Дроссельная заслонка закрывается, но турбина крутится на тех же оборотах. Упс… кажется это был пневмоудар (помпаж). Лопаткам компрессора в этот момент не позавидуешь. Как правило частый помпаж гнёт вал компрессора, лопатки, изнашивает упорный подшипник.
Вы переключили скорость, а лопатки турбины уже уменьшили своё вращение, и нужно опять их раскручивать, а это потеря времени.
Для того, что бы при закрытии дросселя, воздух нашёл себе путь, и существует клапан блоу-оф. Вакуум образуемый при закрытии дроссельной заслонки мгновенно открывает перепускной клапан, и поток воздуха безпрепятственно выходит на улицу, или на вход турбокомпрессора. Крыльчатка турбины при этом не теряет своих оборотов, и готова раскручиваться вновь, на новой передаче.
Интеркулер ( промежуточный охладитель воздуха ) является неотъемлемой частью двигателя с турбонаддувом. Он работает примерно как радиатор в автомобиле, только охлаждает не тосол, а воздух, нагретый турбиной. Турбокомпрессор имеет две части — горячую и холодную. Горячая часть раскручивается выхлопными газами, и сильно нагревается. Холодная часть закачивает атмосферный воздух в мотор, при этом тоже сильно нагревается от горячей части.
Горячий воздух сильно расширен, и в нём меньше молекул кислорода, так нужного двигателю. Поэтому воздух нужно охладить, иначе весь эффект от турбонаддува не будет иметь смысла. Чем холоднее воздух, поступающий в двигатель, тем больше его мощность.
Размер интеркулера тоже нельзя увеличивать бесконечно, чем больше интеркулер, тем больше турбопровал, то есть накачанный воздух пропадает в недрах слишком большого интеркулера при прибавке «газа». Но на мощных моторах он должен быть достаточно большим, иначе маленький интеркулер будет тормозить поток воздуха от большого турбокомпрессора. К примеру на моторе мощностью 1000 л/с входное и выходное отверстие интеркулера должно быть не менее 100 мм.
Интеркулер немного отличается по своему устройству от радиатора для тосола. В его каналах существуют дополнительные перегородки, для того чтобы воздух отдавал тепло как можно быстрее. Так же он выдерживает большое давление и температуру, и выполнен целиком из металла ( алюминия ) для большей прочности.
▪Мал золотник, да дорог.
Регулятор давления топлива (РДТ) применяется на инжекторных двигателях для поддержания постоянного давления топлива в топливной рейке, от которой питаются форсунки. Обычно давление топлива составляет 3 атмосферы, из этой цифры и расчитывается производительность форсунок у всех производителей. На новых моторах ВАЗ объёмом 1,6л (РДТ 380) давление топлива увеличено до 3,8 атм.
Но у РДТ 300 есть ещё одна полезная функция — он корректирует давление топлива, в зависимости от давления во впускном коллекторе. Для этого к регулятору подходит резиновый шланг. На атмосферных двигателях при закрытии дроссельной заслонки в коллекторе создаётся вакуум, и соответственно топливо начинает поступать в двигатель интенсивнее. Обратный эффект происходит на двигателях с турбонаддувом: во впускном коллекторе образуется большое давление наддува, и топливо из форсунок поступает в меньших количествах, чем рассчитывалось. Получается что производительность форсунок рассчитывается на атмосферное давление. Но регулятор с функцией корректировки давления топлива помогает справиться с этой задачей.
Рекомендуемая корректировка давления топлива — 1:1 к изменению давления воздуха.
Для справки: при увеличении давления топлива на 100%, производительность форсунок увеличивается на 50%.
На двигателях с турбонаддувом сильно возрастает тепловой режим работы двигателя. Количество сгоревшей рабочей смеси за единицу времени увеличивается пропорционально давлению наддува, соответственно тепло переходит не только в мощность двигателя, но и передаётся его частям. Сильно нагреваются поршни, цилиндры, выпускная система и турбина.
При температуре 260`С минеральные компоненты в масле могут закоксоваться, и отложиться в масляных каналах и подшипнике турбокомпрессора. Так же масло при большом нагреве становится очень жидким и теряет смазывающие свойства. Синтетическое масло менее подвержено воздействию нагрева, почти не теряет вязкость и не коксуется, поэтому предпочтительней для двигателей.
Чтобы не допустить перегрева масла, для этого служит масляный радиатор. Он подсоединяется к специальному переходнику под масляным фильтром. Большинство турбин не имеют канал для охлаждающей жидкости (тосола), и поэтому единственный способ охладить подшипник турбины — смазка холодным маслом.
Для отвода излишней температуры от турбо мотора все средства хороши, и поэтому иметь масляный радиатор желательно на каждой турбированной машине.
Как правильно подобрать турбокомпрессор?
Важен ли правильный выбор размера турбины?
Правильно подобранный турбокомпрессор обеспечит уверенные обороты порога наддува, некритичное сужение системы, низкую температуру на впуске и невысокое давление в выпускном коллекторе. Любой человек умеющий читать и пользоваться телефоном, вполне может выбрать правильный размер турбонагнетателя. Никакой фундаментальной науки, никакого волшебства, только немного размышлений и аргументированных оценок. Например, Вы хотите самый низкий порог наддува? Хорошо, это возможно если вы проводите время в пробках. Это единственный случай когда важен низкий порог наддува. Будьте уверены – белее низкий порог наддува, меньшая мощность. С другой стороны, если вашей целью является максимальная мощность, турбонагнетатель нужного размера, скорее всего, не будет производить никакого давления наддува до верхней половины диапазона оборотов. Это неприемлемо с точки зрения гибких требований, предъявляемых к повседневному автомобилю. Необходим компромисс. Не скатывайтесь до низкого уровня журналистов, утверждающих, что качество системы турбонаддува характеризуется тем, сколь малые обороты нужны ей от двигателя, для создания наддува.
Конструкция турбонагнетателя влияет на его характеристики?
Нет. Фактически все турбины долговечны, эффективны и отвечают предъявленным требованиям. Характеристики турбокита никоим образом не связаны с моделью турбокомпрессора, если эта модель не является единственным турбонагнетателем требуемого размера, доступным для применения. Некоторые конструкции имеют встроенные вестгейты. Такое исполнение вестгейта требует немного больших усилий, чтобы сделать его столь же эффективным, как внешний вестгейт. В этом случае модель турбонагнетателя влияет на его характеристики, но только из-за интегрированного вестгейта.
Сдвоенные турбины дают какое-либо преимущество?
Иногда. Двигатель объемом более трех литров, может получить пользу от применения двух турбин. Две небольшие турбины могут слегка снизить инерционность турбосистемы, в противоположность одному большому турбонагнетателю, и обеспечивают лучший баланс между характеристиками наддува на низких и максимальных оборотах. При объеме более пяти литров, две турбины действительно станут необходимостью. Не подумайте, что парные турбины турбины более мощные, просто при их использовании накладывается очень много прочих факторов.
Что означает эффективность (КПД) компрессора и почему она важна?
Эффективность (КПД) компрессора не означает ничего иного, как реальную температуру воздуха, выходящего из турбонагнетателя при наддуве, относительно расчетного значения, основанного на термодинамических уравнениях. Вычислите одно значение, измерьте другое, разделите расчетное значение на измеренное, и вы получите эффективность компрессора. Соответствие эффективности компрессора конкретному двигателю важно в том, чтобы максимум эффективности компрессора находился где-нибудь около пика мощности или максимальных оборотов двигателя, чтобы компрессор давал самую низкую возможную тепловую нагрузку. “Высокоэффективный” является выражением дилетантов, изобретенный случайными авторами для описания турбокомпрессоров, обеспечивающих давление наддува на низких оборотах. Если что-то может быть совершенно неправильным, то это пример того. Давление наддува на низких оборотах означает не большой компрессор, который является не эффективным на высоких оборотах. Таким образом, он производит высокие температуры и является как раз противоположностью “высокоэффективному”
Давление в выпускном коллекторе, влияет ли на характеристики?
Да. Давление в выпускном коллекторе – критерий того, насколько хорошо турбина подобрана для конкретного двигателя. Давление в выпускном коллекторе не должно превышать давление наддува более чем в два с половиной раза. Это соблазняет изготовителей турбокита использовать слишком малые турбины, только для того, чтобы выдавать давление наддува на низких оборотах. Низкий порог наддува может быть и полезным, но переусердствовать при этом означает получить серьезную, более 20%, потерю мощности на оборотах выше средних. Необходимый баланс между наддувом на низких оборотах и наддувом на максимальных оборотах – задача проектирования, которую должен решать каждый решившийся на установку турбины. В общем, меньшее давление в выпускном коллекторе означает большее количество лошадиных сил. Другими словами, большие турбины бегают быстрее.
С небольшим нагнетателем точка максимальной эффективности достигается рано, и минимум тепловыделения будет на низких давлениях наддува. Чтобы снизить температуру при достижении большой мощности, необходим большой турбонагнетатель.
Когда точка максимальной эффективности находится на более высоких оборотах, это означает более низкую температуру воздуха в этом режиме. Более низкая температура дает более плотный воздух, который обеспечивает пик момента в верхнем диапазоне оборотов.
Выбор размера компрессора.
Необходимо понять нужную степень повышения наддува, степень расхода и плотности воздуха и степень эффективности нагнетателя перед тем, как приступать к подбору нагнетателя нужного размера.
Степень повышения давления.
Степень повышения давления расчитывается как полное абсолюдное давление, произведенное турбиной, разделенное на атмосферное давление.
Степень сжатия = 1+наддув/1
В конечном счете, мощность, полученная от использования турбонаддува, зависит от количества молекул кислорода в воздухе, сжатых в каждый кубический сантиметр объема. Это называется плотностью воздушного заряда. При прохождении через систему турбонаддува плотность немного изменяется.Когда воздушные молекулы принудительно «утрамбовываются» в нагнетателе до определенной степени сжатия, плотность не увеличивается на тоже самое значение, потомучто при сжатии увеличивается температура, и воздух расширяется обратно в прямой зависимости от того насколько он нагрет. Хотя воздушный заряд после сжатия окажется более плотным, его плотность будет всегда меньше, чем степень повышения давления. Для снижения негативного фактора этого эффекта применяют промежуточные охладители, позволяющие относительной плотности приблизиться к значению степени сжатия.
Зависимость относительной плотности от степени повышения давления. Плотность падает при увеличении температуры, поэтому фактическая степень увеличения массы воздуха всегда меньше чем степень повышения давления.
Расход воздуха равен обьему х обороты х 0.5 х Ev и поделенному на 1000000. Здесь 0.5 означает, что у четырех тактного двтгателя воздух в цилиндр поступает только в один оборот из двух, Ev это объемная эффективность. Делим на 1000000 для того, чтобы получить кубические метры из кубических см. Чтобы преобразовать кубические метры к кг/мин надо умножить на плотность воздуха на высоте географического места положения.
Выбор размера турбины.
Предполагаемое применение системы двигатель+турбонагнетатель является также основным критерием при выборе размера турбины, поскольку определяет выбор между моментом на низких, средних или максимальных оборотах двигателя. При этом выборе приходиться иметь дело с двумя величинами: основной размер турбины и отношение площадь/радиус (A/R).
Основной размер турбины.
Предполагается, что основной размер турбины характеризует ее способность производить мощность на валу, необходимую для привода компрессора при желаемом расходе воздуха. Поэтому большие турбины обеспечивают более высокие отдаваемые мощности, чем не большие. Для простоты картины, оценивать размер турбины можно по диаметруее выходного отверстия. Это является упращением теории турбин, однако на практике такой подход дает возможность оценить способность турбины обеспечить тот или иной расход.
Компрессор Garrett GT2860RS. Цифры справа — число оборотов турбины в минуту. Видно, что линия соединяющая точки PR=1 и PR=1.8 проходит за границей устойчивой работы компрессора.
Компрессор Garrett GT2557R, несмотря на КПД, меньший чем у Garrett 2860RS, лучше подходит для заданного применения.
Диаграмма диаметра выходного отверстия турбины относительно расхода воздуха на впуске — не точный инструмент для выбора, но приблизительный критерий первоначального отсеивания.
Разумный метод выбора турбины состоит в том чтобы проконсультироваться в компании, у которой вы приобретаете турбокомпрессор. Конечно, при выборе будет существовать возможность допустить ошибку в ту или иную сторону. И так как выбор происходит в пределах первоначального предназначения системы турбонаддува, имеет смысл каждый раз выбирать в большую сторону.
Выбор отношения A/R
Приблизительный диаметр выходного отверстия турбины, требуемый для привода компрессора при заданном расходе воздуха.
В то время как основной размер турбины является критерием расхода газа через турбину, отношение A/R дает инструмент точного выбора из диапазона основных размеров.Чтобы понять идею отношения A/R, представте кожух турбины в виде конуса, обернутого вокруг вала в виде спирали. Распрямите етот конус и отрежьте небольшой кусок, на некотором растоянии от конца. Отверстие в конце конуса — выходное сечение кожуха. Площадь этого отверстия и есть A в отношении A/R. Размер отверстия существенен, поскольку он определяет скорость, с которой выходят отработанные газы из улитки турбины и попадают на ее лопатки. При любом заданном расходе газов для увеличения скорости их истечения требуется уменьшение площади выходного отверстия. Эта имеет существенное значение для управления частотой вращения турбины. Необходимо иметь ввиду, что площадь выхода влияет на побочный эффект обратного давления отработанных газов и, таким образом, оказывает влияние на процессы, протекающие в камере сгорания двигателя.
R в отношении A/R — растояние от центра площади сечения в конусе до оси вращения вала турбины. Все A, разделенные на соответствующие им R дадут одинаковый результат.
R тоже оказывает сильное влияние на управление скоростью турбины. Представьте, что кончики лопаток турбины движутся с той же скоростью, что и газ, когда он попадает на лопатки. Отсюда легко понять, что чем меньше R, тем выше частота вращения турбины.
Увеличение скорости вращения турбины, которая зависит от отношения A/R, почти всегда достигается изменением площади выходного сечения кожуха турбины при остающемся неизвенном радиусе.
Выбор, который кажется логичной отправной точкой для отношения A/R — это одно, а фактически полученный правильный результат — это совсем другое. Обычно не избежны пробы и ошибки. Разумный выбор может быть обоснован количественным образом или, в некоторой степени, качественной характеристикой адекватности реакций турбосистемы. Количественная оценка требует измерения давления в выпускном коллекторе или на входе в турбины и сравнения его с давлением наддува.
Результатом неправильного выбора отношения A/R может стать увеличение иннерционности наддува, если отношение слишком велико. Отношение A/R может быть настолько большим, что не позволит турбонагнетателю развить обороты, достаточные для достижения желаемого давления наддува. Если отношение, напротив, чрезмерно мало, реакция турбонагнетателя может быть столь быстра, что будет казаться нервной и трудной для управления. Результат проявится и в виде отсутствия мощности в верхней трети диапазона оборотов двигателя. Это будет похоже на атмосферный двигатель, у карбюратора которого закрыта вторая заслонка.
При написании использованы материалы книги Maximum Bust.