Провода для зарядного устройства аккумулятора автомобиля
Электрика своими руками: Делаем качественные провода для прикуривания автомобиля
Вступление
Добрый день, уважаемые читатели.
По этой причине по его просьбе я сделал ему провода для прикуривания, о которых и пойдет в статье речь.
Для жителей Сибири и северных районов России морозы — дело привычное и, обычно, к зиме автомобили у них хорошо подготовлены (см. последний раздел статьи). А вот для жителей средней полосы, особенно, живующих в крупных городах, неожиданно нагрянувший мороз может представить серьезную проблему.
Почему бы не «купить готовые провода»? Дело все в том, что качественных, в продаже просто нет. Из всех виденных, что-то более-менее приличное было в обзоре журнала «За рулем» и называлось «совет автоэлектрика». Но это изделие было специально сделано производителем для теста данного журнала — поэтому есть сомнения, что штатные изделия имеют такое же качество изготовления.
Почему нет в продаже? Дело в том, что качественный прикуриватель с учетом мнокогратных рыночных накруток обойдется покупателю в такую сумму, что его просто никто не будет покупать.
Поэтому полки автомагазинов ломятся от дорогого и в тоже время низкокачественного барахла, в основном, китайского (но есть и российского) производства. На упаковках написаны токи 500, 600 и даже 1000 ампер, но это все «китайские» амперы и их надо делить минимум на 10.
Конечно, эти прикуриватели помогают, но лишь в том случае если аккумулятор разряжен лишь незначительно. Или если зарядка длится долго (не менее 6-10 часов). Но готов ли кто-то прикуривать ваш автомобиль в течение такого времени? Обычно, если авто не заводится минут за 20-30, то хозяин закрывает авто и едет на автобусе.
Что такое качественный прикуриватель и зачем он нужен?
Я ранее писал о китайских и российских прикуривателях и писал что, к сожалению, практически всегда, они являются некачественными.
Даже прикуриватель от знаменитой американской марки Snap-On, стоимостью 12 тысяч рублей (по стостоянию на январь 2017 года) по результатам тестов оказался некачественным (что вдвойне обидно с учетом такой высокой цены).
Вот отзыв журнала «За рулем» по результатам теста:
Самое большое разочарование теста. Громкое имя и оглушительная цена — всё, чем запомнилось изделие. Мягкий морозостойкий провод — это хорошо, но уже при скромном токе 480 А падение напряжения превысило 2,0 В.
А что же такое качественный прикуриватель?
Качество прикуривателя определяется следующими составляющими:
Аккумулятор легкового автомобиля имеет номинальное напряжение 12 вольт, при этом стартер в среднем легковом автомобиле имеет мощность, сопоставимую с варочной панелью. Например, порядка 7 киловатт (примерно такая мощность требуется для прокрутки коленвала двухлитрового двигателя). Отсюда путем нехитрых вычислений получаем номинальный ток стартера равным 7000/12 = 583 ампера. На самом деле, напряжение на заряженном аккумуляторе больше 12В (обычно 12.7), следовательно, ток меньше, но это не так принципиально — тут важно понимать откуда берутся такие огромные токи.
Именно такой ток должен выдать аккумулятор для того чтобы двигатель запустился. Этот ток указан на самом аккумуляторе как ток холодного запуска. А если аккумулятор сильно разряжен, то для запуска двигателя такой ток должен выдерживать не только кабель прикуривателя, но и «крокодилы», все транзитные соединения в прикуривателе, соединения с аккумуляторами автомобилей и т… д.
Если где-то будет слабое звено, из-за его сопротивления будет падать напряжение, а само соединение — сильно греться. В итоге при севшем аккумуляторе двигатель акцептора не сможет запуститься.
Так же очевидно, что сечение провод должен быть медным, иметь достаточно большое сечение и при этом быть максимально коротким (но настолько при этом чтобы можно было донянуться от клемм аккумулятора одного автомобиля до клемм другого — поэтому такие провода обычно не делают короче 2.5 метров). Крокодилы должны иметь мощные зажимы с большой прощадью контакта, а соединения должны быть надежными и иметь малое переходное сопротивление.
Как устроены типовые провода для прикуривания. имеющиеся в продаже?
Состоят такие прикуриватели из жестяных крокодилов с медным покрытием, а так же проводов сечением от 2.5 до 4 квадратов (все зависит от щедрости как дядюшки Ляо, так и российского продавца, заказавшего у китайцев данный провод). При этом провода имеют ненормально толстую изоляцию — очевидно, что это делается с целью обмана покупателя (попытка показать что сечение реально больше, чем оно есть). Изоляция обычно состоит из ПВХ с повышенным содержанием пластификаторов. Провода крепятся к крокодилам за счет прижима скобами, прикрытыми изоляцией ручек.
Естественно, ни о каком токе в 600 ампер (и даже в 100!) тут не может быть и речи. Такие прикуриватели годятся только для прикуривания не сильно севших аккумуляторов. Либо необходимо длительно (в течение многих часов) заряжать аккумулятор автомобиля-акцептора малыми токами.
Давайте посмотрим поближе:
Конструкция «крокодила» не внушает доверия — все болтается. Сами «крокодилы» сделаны из омедненной жести с очень малой площадью контакта (фактически, «крокодил» контактирует с клеммой аккумулятора только тонкой боковой поверхностью одного зажима).
Медные жилы провода прижимаются к поверхности «крокодила» пучком (как на фото ниже). При этом сам провод за изоляци. прижимают скобы внутри ручки «крокодила» (к сожалению, фото крепления не сделал, но поверьте мне на слово — оно просто ужасное). Из-за некачественного провода жилы и изоляция легко перетираются, что и видно на фото:
А теперь посмотрим на провод «минуса» в разрезе. Рядом для сравнения провод ПуГВ сечением всего 10 мм2, который используется для сборки квартирных щитов с токами до 63 ампер. Абсолютно большую часть китайского провода занимает гипертрофированная изоляция, а сечение меди — примерно 2.5-3 квадрата.
Стоит ли выбрасывать деньги на подобное барахло? Ведь очевидно, что даже ток в 100 ампер (и даже в 50!) подобная конструкция не выдержит.
Такие прикуриватели подходят только для «прикуривания» незначительно севших аккумуляторов.
Выбор комплектующих для проводов прикуривателя.
Сперва следует начать с понимания того, на какой номинальный ток он должен быть рассчитан. Данная информация написана на самом аккумуляторе (ток холодного пуска). Возьмем в качестве примера ток одного стартера — 530 ампер.
Соответственно, все компоненты подбираются под данный ток. Ввиду сильно ограниченного ассортимента предлагаемых на российском рынке устройств, приходится иногда брать компоненты, рассчитанные на немного меньший ток. Но при грамотном подходе, в этом нет ничего страшного.
В качестве «крокодилов» выбраны зажимы производства итальянской фирмы AE с номинальным током в 500 ампер. Крокодилы состоят из цельной латуни, имеют соответствующую току площадь контакта. В каждой из ручек предусмотрена дырка под винт M4 для крепления провода, одна из дырок идет с нарезаной резьбой. Есть красный и черный вариант.
Сечение кабеля выбрано 35 мм2. Так же потребовалось решить две следующие проблемы — кабель 35 квадратов очень толстый, его невозможно прикрепить к данным «крокодилам» напрямую. Кроме того, качественное соединение «крокодила» с клеммой аккумулятора может быть обеспечено только если напряжение подводится одновременно к обоим сторонам зажима, а не к только одному как сделано на всех виденных мной прикуривателях.
Для этих целей был выбран кабель КОГ1 1×16 тоже производства Кольчугино. Он более гибкий, чем КГ, а кроме того позволит покдлючить основной провод к крокодилам (к каждой половине одного «крокодила» будет подходить по 16 квадратов меди).
Все добро на одном фото. Еще будет использована клеевая термоусадка двух сечений, но я ее не покупал так как она есть у меня в наличии. К сожалению, если ее придется покупать «с нуля», то это обойдется очень дорого — особенно это касается термоусадки для защиты ГМЛ, требуется совсем немного, а продается она минимум метровым отрезком. Как вариант съэкономить — не изолировать термоусадкой провод, идущий от наконечников ТМЛ, а гильзы ГМЛ изолировать хб-изолентой с фиксацией ее на клей.
Кстати, вот сечения КОГ1 1×16 и КГ 1×35 для сравнения с китайской продукцией:
Сборка проводов для прикуривателя
«Крокодилы» имеют заводские дырки под винты М4, но это никуда не годится! Дырки рассверливаются сверлом, далее в них нарезается резьба наметчиком для М8. Дырку, соответственно, надо сверлить на миллиметр уже, то есть сверлом 7 мм.
Далее берется наконечник ТМЛ и привинчивается к «крокодилу» винтом М8, после чего излишки винта срезаются ножовкой. Это нужно для того чтобы точно отмерить длину винта:
В результате все винты получаются укороченными. К сожалению, я не нашел в продаже таких коротких винтов, поэтому пришлось колхозить:
«Крокодилы» со снятыми ручками и установленными короткими винтами:
Далее кабель КОГ1 разрезается на 8 равных частей (получается по 25 см каждая) и зачищается. Длина «косички» должна быть такой чтобы она влезла в ТМЛ, привинченный винтом к дырке, а изоляция начиналась сразу там, где заканчивается пластик ручек. Оставить изоляцию нельзя — она слишком толстая, кабель не пролезет в просвет ручки «крокодила», кроме того, в этом случае не налезет пластиковая изоляция ручек.
Далее на «косички» опрессовываются наконечники ТМЛ. Это делается при помощи пресс-клещей ПК-35 от КВТ.
Конечно, лучше бы опрессовать не точкой, а шестигранником при помощи гидравлики, однако по роду своей деятельности я не работаю с большими сечениями и не имею гидравлических пресс-клещей. Впрочем, опрессовка точкой так же обеспечивает отменный контакт.
Далее насаживается клеевая термоусадка и усаживается феном. Если вы хотите съэкономить, этот шаг можно пропустить, но все же лучше сделать:
Далее это все закрепляется таким образом:
И одевается изоляция ручек. Если все правильно сделано, дырки в изоляции резать не надо:
После чего при помощи гильз ГМЛ делается основное соединение. Чтобы две жилы по 16 квадратов нормально влезли, с одной стороны гильза чуть зажимается плоскогубцами.
Опрессовывается тем же ПК-35. Я был даже удивлен как легко это делается для такого сечения:
После чего гильза и участки провода с обоих сторон изолируются клеевой термоусадкой. Вот что получилось (минусовой провод). Итоговая длина — 2.5 метра (а если считать от «носов» «крокодилов» то даже чуть больше):
Аналогичным образом делается второй провод (плюсовой):
И вот что получилось;
Провода для прикуривателя получились очень тяжелые, зато надежные. Из периодического обслуживания — только подтяжка болтов.
Так же я решил сделать дополнительную защиту от сверхтоков (на случай ошибочного подключения или короткого замыкания) — в отличие от китайщины, при КЗ такой кабель не сгорит, а вот что будет с аккумулятором, лучше не думать. Для этих целей были закуплены польские предохранители номиналом 500 ампер, а так же наконечники ТМЛ сечением 35 квадратов:
Предохранители вставляются в середину каждого провода на болтовое соединение винтом М8 и изолируются термоусадкой. Но пока времни не было доделать, к тому же нигде нет мануалов о том какая же время-токовая характеристика у этих предохранителей и какое напряжение падает на них на номинальном токе. Решил пока подождать.
Как избежать или минимизировать использование проводов для прикуривания?
Для того чтобы машина заводилась в мороз в средней полосе, следует соблюдать три правила: иметь не очень старый и заряженный аккумулятор (чем выше заряд аккумулятора тем лучше он переносит мороз) с чистыми клеммами и колодками (окисление приводит к сильному падению напряжения), в двигатель должно быть залито «зимнее» менее вязкое масло, свечи должны быть «свежими» (если их срок службы подходит к концу, лучше заменить).
Для этого аккумулятор следует перед зимой подзаряжать от сети 230 вольт при помощи специального зарядного устройства для аккумуляторов. Дело в том, что учитывая реалии современных автомобилей и городов, ток генератора после вычета потребления всех потребителей (фары, кондиционер, вентилятор, бортовая электроника и т.д.) может быть недостаточным для полной зарядки аккумулятора за время поездки.
Естественно, для жителей, например, Норильска с их морозами этого будет недостаточно — насколько мне известно, там или вообще зимой на ночь забирают аккумулятор в тепло или используют специальню сигнализацию, которая за ночь несколько раз запускает двигатель для прогрева.
Важно! Если вы сделаете себе подобные провода и будете ими пользоваться, помните что когда заводится двигатель «акцептора», мотор «донора» должен быть заглушен! И, прежде чем заводить автомобиль «акцептор», хотя бы минут 15-20 следует через провода прикуривателя нужно подзарядить его аккумулятор (мотор «донора» должен при этом работать).
Провода для прикуривания
Найдено 289 товаров
Категория
Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 928 р.
Цена за ед. товара: 482 р. 530 р.
Упаковкой выгоднее!
Цена за упаковку 4 шт.: 2 216 р.
Цена за ед. товара: 554 р. 599 р.
Упаковкой выгоднее!
Цена за упаковку 4 шт.: 4 076 р.
Цена за ед. товара: 1 019 р. 1109 р.
Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 848 р.
Цена за ед. товара: 462 р. 499 р.
Упаковкой выгоднее!
Цена за упаковку 4 шт.: 5 176 р.
Цена за ед. товара: 1 294 р. 1430 р.
Упаковкой выгоднее!
Цена за упаковку 4 шт.: 2 440 р.
Цена за ед. товара: 610 р. 678 р.
Упаковкой выгоднее!
Цена за упаковку 4 шт.: 3 140 р.
Цена за ед. товара: 785 р. 879 р.
Сел аккумулятор и автомобиль не заводится? Если под рукой нет пускового устройства, выручат провода для прикуривания и автомобиль с исправной АКБ. Успешный запуск зависит не только от правильных действий, но и от правильно подобранных кабелей. Они должны подходить под параметры вашего автомобиля и пусковые токи.
На что обратить внимание при выборе?
Сечение кабеля. Известно, что провода для зарядки или прикуривания подбирают по толщине в зависимости от силы пусковых токов. Например, для машин с объемом двигателя до 1,5 л подойдут провода с сечением до 16 кв. мм. Для кроссоверов, внедорожников и грузового транспорта выбирают более толстые кабели – с сечением провода от 25 до 70 кв. мм. Это позволяет подавать ток без потерь и риска перегрева.
Материал жил. Медь считается лучшим вариантом, так как может выдерживать пусковые токи до 1000 А. Алюминий уступает в показателях проводимости тока. Многие производители делают провода для прикуривания из омедненного алюминия, они рассчитаны на токи от 150 до 400 А.
Длина кабелей. Составляет от 2 до 5 м. Если вы паркуете авто там, где всегда есть свободный доступ к капоту и сможет подъехать другой автомобиль, выбирайте провода длиной до 2,5 м. Большая длина необходима на случай, если к машине нельзя подъехать нос к носу. Другой случай – если вы хотите купить провода для прикуривания грузовой техники с высокой кабиной. Но учтите, что цена возрастает в зависимости от длины.
Как правильно подключить зарядное устройство к аккумулятору?
Перед тем, как подключать зарядное устройство к аккумулятору автомобиля, Вам нужно заглушить двигатель авто, при условии, что он был запущен. В настоящее время, большинство современных зарядных устройств позволяют не отключать автомобильные клеммы питания от аккумулятора.
Все что нужно, это заглушить двигатель, надетые клеммы снимать не нужно. Внимательно осмотрите аккумулятор, нет ли на нем подтёков электролита, не должно быть и никакой влаги на аккумуляторе.
Приступим к подключению зарядного устройства к аккумулятору. Если Вы не снимали клеммы, как мы уже обговорили выше, то все что от Вас требуется, это надеть клеммы зарядного устройства прямо поверх автомобильных. Обратите внимание на то, что металлические «щипцы» клемм зарядного устройства должны охватывать металлическую часть автомобильных клемм, хорошо зафиксируйте их. В случае если с аккумулятора все-таки сняты автомобильные клеммы, то клеммы зарядного устройства необходимо надеть непосредственно на клеммы аккумулятора.
Остановимся подробнее на том, как правильно подключить зарядное устройство к аккумулятору.
Для начала, подключите «+» красную клемму зарядного устройства к «+» аккумулятора. После чего, подключите «-» чёрную клемму зарядного устройства к «-» аккумулятора. Затем, удостоверьтесь, что клеммы надеты прочно. И, наконец, вставьте вилку зарядного устройства в розетку. Когда зарядное устройство включится, выберете необходимый режим его работы в соответствии с инструкцией к нему.
Для того чтобы произвести отключение зарядного устройства, производить вышеописанные операции следует в обратном порядке. Сначала переведите зарядное устройство в режим ожидания, затем отсоедините его от сети электропитания, и уже только после этого снимите «-» (чёрную клемму) и затем «+» (красную).
Теперь, когда вы знаете: каким образом следует подключать зарядное устройство, загляните в наш Интернет-магазин, где представлены зарядные устройства отличного качества и по доступным ценам и выберите тот, который подходит именно Вам! Удачи! Мы ждем Вас!
Правильное зарядное устройство для аккумуляторов с десульфатацией (DIY)
Категорически приветствую всех читателей!
Написать данную статью меня побудили несколько факторов: борьба с потенциальным алкоголизмом, желание несколько упорядочить «кашу» из накопившейся информации и, конечно, большое желание помочь единомышленникам. Помощь в постройке аналогичного устройства я всегда готов оказать в копии данной статьи в моём блоге. Но я не буду ничего делать за вас.
В конечном итоге мы получим зарядное устройство с линейной характеристикой выходного тока. Это означает, что зарядка будет происходить в два этапа — постоянным заданным вручную током до набора заданного напряжения, затем постоянным заданным напряжением. При этом выходной ток будет плавно снижаться вплоть до нуля, когда заряд будет полностью окончен. Это самый правильный способ зарядки.
Также мы добавим режим десульфатации аккумуляторной батареи. Такой функцией обладают некоторые заводские зарядные устройства, например, Кедр-Авто 10. Такой зарядник у меня так же имеется, и его режим работы мне не очень нравится: во-первых, он не производит должным образом зарядку постоянным напряжением, а просто падает в дозарядку малым током. Окончания зарядки придется ждать очень долго; во-вторых, в интересующем нас режиме «Цикл» максимальное напряжение целенаправленно увеличено до 15,5 вольт, чтобы устройство не отключалось. Это в конечном итоге приведёт к перезаряду аккумулятора. Использованная у меня реализация лишена этих недостатков.
Ключевые моменты статьи для удобства восприятия и навигации я выделил полужирным шрифтом.
Лирика: данный текст ориентирован на начинающих радиолюбителей, подобных мне самому. Собственно, я сам почти год назад не держал в руках паяльник, пока не набрёл на статью Андрея Голубева про изготовление лабораторного блока питания из компьютерного БП. Не имея четкого представления, зачем он мне впоследствии пригодится, я поставил себе задачу во что бы то не стало разобраться и сделать себе такое устройство. И это мне удалось. Выражаю огромную человеческую благодарность Андрею и Юрию Вячеславовичу за посильную помощь в моих начинаниях. Много крови я у них выпил. Я не повторяю статью Андрея, но постараюсь ключевые моменты переделки раскрыть более подробно, останавливаясь на моментах, которые вызывали у меня много вопросов. Прошу воспринимать данный материал как отчет о проделанной работе. Чтобы понимать, о чем я вообще говорю, вам необходимо изучить вышеупомянутые статьи.
Некоторые здесь и сейчас присутствующие знают, что я человек расчетливый, и не ищущий легких путей. И недавно, промывая подкапотку любимого авто от месячной пыли, обнаружил недобро косящийся на меня красный глаз индикатора плотности в банке аккумуляторной батареи. В связи с никак не радующими глаз ценами на аккумуляторы, да и что угодно в наше время, в принципе, решил, что не стоит оставлять без внимания такой важный элемент автомобиля, как аккумуляторная батарея, пробуждающая 6 цилиндров в сибирские морозы. Готовь сани летом, как говорится. А с другой стороны, не кошерно таскать в гараж лабораторный блок питания, в который вложил душу.
А что нам стоит дом построить?
За период создания вышеупомянутого лабораторника у меня скопилось достаточной количество барахла, которое можно превратить в объект обсуждения – аккумуляторное зарядное устройство.
По сути, это тот же лабораторный блок питания, но с некоторыми ограничениями – минимальное напряжение на выходе равно 14,4В, максимальное 16В, блок питания не стартует без подключенного к выходным клеммам аккумулятора и имеет защиту от переполюсовки. В штатном режиме регулятор напряжения всегда в крайнем левом положении, и напряжение на выходе равно 14,4В. Повышенное напряжение используется для «пинка» запущенным аккумуляторам.
Суть зарядного устройства: обеспечить стабилизированное напряжение 14,4 вольта и заданный ограниченный ток. Проще говоря, в начале процесса зарядки ток будет максимальным, заданным реостатом. По мере заряда батареи, собственное напряжение аккумулятора будет расти. В конце концов, когда напряжение аккумулятора станет 14,4 вольта, блок питания перейдет в режим стабилизации напряжения и станет постепенно снижать ток до нуля. В таком состоянии аккумулятор может находиться сколь угодно долго, и ничего плохого с ним не произойдет.
Мне по вышеупомянутой причине сия поделка обошлась в 0 рублей и 0 копеек, если же все комплектующие покупать поштучно, бюджет может подрасти до 1000 рублей, где большую часть занимают вольтамперметры. От момента задумки до реализации прошла неделя. Делал в основном вечерами, но пару дней посвятил процессу полностью.
На этом описательно-вступительную часть предлагаю считать оконченной и перейти к самому интересному.
Достался в виде трупа блок питания ATX:
Видно следы отвратительного ремонта: силовые ключи и диодные сборки вообще не прикручены к радиаторам. Схема очень схожа с этой:
Что имеем: наша любимая микросхема ШИМ-контроллер TL494; защита, формирование сигнала Power_Good, цепь включения-отключения блока питания PS_ON – на микросхеме LM339. Очень хорошая схема для переделки.
В принципе, все блоки на базе микросхемы TL494 построены одинаково – различия лишь в номиналах компонентов и вариациях схемы защиты. В остальном всё однотипно.
Я поставил себе задачу максимально упростить схему блока питания, дабы во-первых самому не путаться, во вторых иметь возможность удобного монтажа вспомогательных цепей, ну и в третьих – человек я такой, педантичный, не люблю ненужных деталей. Схему блока питания я сократил до такого вида (номиналы и обозначения не стал менять, их вы найдете в статье Андрея):
Цепь PS_ON я сначала удалять не стал, дабы использовать ее впоследствии как выключатель блока питания, однако не учёл, что эта схема работает как триггер. В итоге, схема была удалена.
В итоге плата после стадии разрушения и удаления ненужных цепей выглядела так:
Дежурный источник питания я удалил с корнями, чтобы не занимал драгоценное место на плате, для аккумуляторного зарядника он абсолютно не пригодится, убрал схемы Power_Good и PS_ON, мониторинг выходных напряжений от цепи защиты, отвязал 16 вывод TL494 от схемы защиты, высвободил 1,2, 15, 16 выводы, цепи вторичных выпрямителей полностью выпаял и организовал одну на месте 5-вольтовой, отрезав при этом дорожки от пятивольтовой обмотки трансформатора и припаяв к 12-вольтовой:
Можно сказать, что этот блок принял вариацию АТ блока питания – был удален +3,3В выпрямитель со всеми остальными, схема PS_ON и дежурный источник питания. Есть одно «но»: в АТХ блоке питания для запитки ШИМ используется выход нестабилизированного напряжения с отдельной обмотки дежурного источника питания, за счет этого и запускается блок питания. В АТ БП никакой дежурки нет, поэтому реализован «автозапуск» инвертора: добавлены резисторы с большим сопротивлением между Б-К мощных транзисторов. Это провоцирует приоткрытие последних, что за короткий импульс позволяет набрать на выходе достаточное напряжение, и ШИМ будет питаться уже от выходного напряжения. Следует заметить, что для тестирования блока питания без аккумулятора на выходе такой вариант не годится – я сам столкнулся с этой проблемой – на холостом ходу блок замечательно работал, а при добавлении нагрузки начинал трещать, роняя напряжение. Я сразу сообразил с чем это связано: при подключении нагрузки блок падает в режим стабилизации тока, роняя напряжение по закону Ома. В моем случае это были пара вольт. От такого напряжения ШИМ не будет работать, и прыгнет в автогенерацию, получит импульс, затем снова заглохнет от нагрузки, и далее по кругу. Поэтому, если вы собираетесь делать зарядное устройство из АТ блока питания – уберите резисторы между Б-К силовых ключей и при испытаниях подавайте на ШИМ внешнее питание от 10 до 30 вольт.
Цепь питания микросхемы заведена через диод и резистор на выход вторичного выпрямителя, таким образом, при подключении аккумулятора будет стартовать блок питания. А при положении тумблера в выключенном состоянии мы увидим на дисплее текущее напряжение на аккумуляторе. Побочный эффект — загудит вентилятор охлаждения при наличии аккумулятора на выходных клеммах. От этого можно было бы избавиться, запитав вентилятор от сохраненного дежурного источника питания, либо от пятивольтовой обмотки трансформатора через диодную сборку от 12в обмотки. Мне было лень переделывать.
А теперь давайте разберемся, как заставить блок питания выдавать необходимые нам параметры.
Микросхема TL494 хороша тем, что имеет на борту два усилителя ошибки, работающих по ИЛИ, один из которых либо не используется, либо завязан на схему защиты. Чтобы получить на выходе то или иное значение, предлагаю рассмотреть схему управления. Я взял за основу схему управления Андрея и переделал ее под свои требования.
Предел выходного значения напряжения, либо тока будет соответствовать максимальному напряжению 5В на входах компараторов TL494 (выводы 1, 2, 15, 16)
Итак, нам нужно, чтобы максимальное напряжение было 16 вольт.
Усилители в цепи регулировки напряжения и тока в данной схеме управления включены по дифференциальной схеме.
Рассмотрим усилитель в цепи регулировки напряжения:
Для точной работы дифференциального усилителя необходимо сохранять равенство сопротивлений R1, R3 и R2, R4 в парах.
Зададим R1 = R3 = 4,9 кОм. Можно задать и другую пару резисторов — это не принципиально.
Uвых = Uвх*(Rос/R1), где
R1 — искомые сопротивления (R2, R4 в схеме)
Rос = 4,9 кОм — парные резисторы R1, R3 в схеме
Uвых = 5 вольт — максимальное напряжение на входе компаратора TL494
Uвх = 16 вольт — максимальное выходное напряжение блока питания.
Значит, коэффициент усиления будет равен К = Uвых/Uвх = 5/16 = 0,3125
Соответственно R1 = Rос/К = 4900/0,3125 = 15680 Ом = 15,7 кОм.
Таким образом, на 1 вход TL494 уходит 5В при выходном напряжении 16 вольт. Компаратор стремится сравнять напряжения на своих входах, поэтому на 2 входе для достижения 16 вольт должно быть так же 5 вольт. При уменьшении этого напряжения, пропорционально начнет спадать и напряжение на выходе вторичного выпрямителя, откуда берет свое напряжение наш 10 вход LM2902. Соответственно, регулировку напряжения будем осуществлять, поставив потенциометр 10 кОм между 14 и 2 выводами микросхемы. Чтобы ограничить минимальный порог регулировки напряжения на 14,4 вольтах, рассчитаем необходимое для этого напряжение на 2 выводе TL494: U = 5/16*14,4 = 4,5В.
Значит, нам нужно иметь делитель напряжения на 2 выводе, который не даст напряжению опуститься ниже данного значения. Считаем делитель: в минимальном положении потенциометра верхнее плечо будет равно 10 кОм, тогда, нижнее должно быть 90,9 кОм. Добавляем к потенциометру резистор R15 нужного номинала. Тем самым, мы ограничим диапазон регулировки напряжения на 14,4-16В.
Теперь поговорим о регулировке выходного тока. В лабораторном блоке питания Андрея реализована регулировка напряжения с учётом падения напряжения на шунте. На самом деле, это совсем крошечная нестабильность выходного напряжения в зависимости от нагрузки (при данном шунте — 0,03В при 20А), и для зарядки аккумуляторов вообще не играет никакой роли. По сути, можно просто собрать два делителя на 1 и 2 вывод TL494, а ограничением тока занять всего один операционный усилитель. Мне просто захотелось сделать всё идеально, поэтому моя схема управления аналогична схеме Андрея. Используется второй операционный усилитель DA1.2, включенный так же по дифференциальной схеме. Обратите внимание: R2 в цепи регулировки напряжения подключен после шунта. Это позволит измерить падение напряжения на шунте и проводах, которое потом учтёт ОУ в цепи регулировки напряжения, и напряжение останется стабильным.
Произведём расчет для некоторого шунта с обозначением 50А и 75 мВ: нетрудно догадаться, что это падение напряжения в 0,075В при токе в 50А.
Итак, нам нужно задать предел регулировки тока. Я оставил 10 ампер, хотя мой блок в состоянии выдать больше. Со вторым компаратором принцип тот же – для получения максимального заданного значения необходимо уравнять напряжения на 15 и 16 выводах. Соответственно, задаем наш предел в 10А:
Uвых = Uвх*(Rос/R1), где
R1 — искомое сопротивление (R6, R8 в схеме)
Rос = 20 кОм — парные резисторы R5, R7 в схеме
Uвых = 5 вольт — максимальное напряжение на входе компаратора TL494
Uвх — падение напряжения на шунте под заданным максимальным током.
Считаем Uвх:
— Сопротивление шунта 0,075В 50А Rш = U/I = 0,075/50 = 0,0015 Ом
— При заданном максимальном токе 10А на шунте будет падать Uвх = Rш*I = 0,0015*10 = 0,015В
Значит, коэффициент усиления будет равен К = Uвых/Uвх = 5/0,015 = 200
Соответственно R1 = Rос/К = 20000/333,3 = 60 Ом.
Для полного понимания вышесказанного рекомендую ознакомиться с этой статьей.
На 15 вывод аналогично подключаем реостат и резистором R16 задаем нижний порог регулировки тока 100 мА. Когда аккумулятор окончательно зарядится, блок питания перейдет на режим холостого хода, поддерживая данное состояние батареи.
На третьем ОУ делаем индикацию режима стабилизации напряжения: так как компараторы TL494 работают по ИЛИ, то ограничиваться у нас будет либо ток, либо напряжение – в зависимости от того, что наступит раньше – напряжение достигнет заданного, или же ток. Поэтому, мы соединяем неинвертирующий вход DA1.3 с 1 выводом TL494, а инвертирующий – с 16 выводом, а на выход подключаем непосредственно индикатор. Таким образом, когда напряжение на 1 выводе больше, чем на 16 – на выход ОУ поступает сигнал. Загоревшийся светодиод будет говорить о достижении выставленного напряжения на аккумуляторе. В этом режиме «дозарядки» ток снижается, не давая превысить выставленное напряжение. Окончанием заряда следует считать остановку повышения плотности электролита, но в целом – чем меньше зарядный ток, тем лучше. Полезно подержать аккумулятор в этом режиме несколько дней – будет происходить десульфатация пластин малым током.
Это всё, что я хотел рассказать о схеме управления и принципе её работы.
Изготавливая плату схемы управления, я решил не ломать голову и пойти по пути наименьшего сопротивления, сделав её на отдельной плате (даже двух).
Плата с регуляторами тока и напряжения прикручивается непосредственно к передней стенке блока питания и служит шасси для самих регуляторов и выходных клемм. Вторая плата схемы управления припаяна к основной плате блока питания через 4 ножки по периметру на высвободившееся место бывшего дежурного источника питания.
Что касается дросселей – я намотал первый дроссель на 27 мм сердечнике в два слоя сложенной вдвое эмалью 1,05 мм, число витков — 30. В сумме это 1,74 мм² сечение, позволяющее пропускать 10А. Второй дроссель рекомендую использовать от бывшего пятивольтового фильтра: оптимально 10 витков на ферритовом стержне.
Питание на выходные клеммы поступает через две пары проводов сечением 18AWG, что в сумме дает сечение 1,6 мм², позволяющее пропускать ток «почти» 10 ампер. Во-первых, сечение получается не 1,6, а чуть больше, а во вторых длина проводов минимальна. Так что пока не буду добавлять третий провод, к тому же нет у меня аккумуляторов, активно поедающих 10 ампер. Зато выходные двухметровые «крокодилы» распаял на трех аналогичных проводах.
Вентилятор в моем варианте блока питания работает от выходного напряжения через интегральный стабилизатор LM7812. Я установил его на радиатор выпрямительных диодов в освободившееся место. Важно обеспечить изоляцию корпусов LM7812 и диодных сборок от радиатора, так как при контакте будет короткое замыкание — на среднем выводе LM7812 — земля!
Здесь же видно способ крепления шунта. В связи с ограниченным местом внутри корпуса БП АТХ, места под него ну совсем не осталось. Поэтому пришлось выдумать нехитрое крепление: от удачно расположенной микросхемы LM339 я выпаял целиком всю вторую сторону, что позволило мне наглым образом вкрутить сквозь плату болт и с помощью двух гаек на нужной высоте зафиксировать шунт. С другой стороны шунт поджимают выходные минусовые провода, которые подходят как раз к нему.
А теперь интересное дополнение к этому блоку питания: режим десульфатации. По сути, это простая реализация этого способа, выполненного стационарно, но с некоторыми доработками. Остановимся на них подробнее.
Во-первых, реле поворотов я использовал другой модели: 644.3777. Лампочку в его нагрузку я не ставил — не вижу в ней никакого смысла.
Оно реализовано несколько иначе. Замена конденсатора на 1000 мкФ дала мне увеличение времени задержки замыкания-размыкания до 6 секунд, этого было конечно же мало. Желания городить конденсаторы еще больше у меня не было, срисовав схему печатной платы, стало ясно, что изменять. Были заменены резисторы R2 с 1 кОм на 4,7 кОм и R3 с 7,5 кОм на 20 кОм. Теперь реле разомкнуто 20 секунд и замкнуто 10 секунд. Отлично!
Во-вторых, столкнулся с проблемой: на реле-прерыватель при отсутствии аккумулятора на выходе продолжает поступать питание от выхода БП через нормально замкнутые контакты пятиконтактного реле. После первого срабатывания наступит коллапс, т.к. контакт разомкнется, и реле начнет трещать. Пришлось добавить небольшое третье реле, выдернутое из японского блока навигации, которое будет коммутировать между собой левый контакт реле-прерывателя и верхний контакт пятиконтактного реле. Таким образом, пока на специальном плюсовом разъеме для циклового режима не появится аккумулятор, на питание реле-прерывателя не пойдет питание. Это нам и нужно!
При подключении аккумулятора к основному разъему будет идти обычная зарядка, при подключении к дополнительному разъему — цикловая. В цикловом режиме необходимо выставить зарядный ток, приблизительно равный току, протекающему через нагрузку.
Внимательные читатели заметят бездействующий светодиод режима дозарядки. Это мой косяк плотного монтажа, повредил подводящий провод. Исправлю.
Следует добавить, что при целевом использовании получившегося прибора крайне желательно реализовать защиту от переполюсовки, иначе ваш блок потерпит катастрофу.