Разработка авто на воде
skeptimist
skeptimist (Блог Андрея В. Ставицкого)
Соотноси всё с вечностью
О двигателях на воде и убийствах их изобретателей
Интересная равно как и спорная информация о новых технологиях, которые позволяют создавать двигатели, работающие на воде.
Вот ничего определённого по этому поводу не могу сказать. Однако верю, что эпоха нефти закончится и будет нечто принципиально другое. Но что?
Однако с этими двигателями сплошная коспирология. Она логически выстроена. Но тайна есть тайна.
При этом «с каждым днём интеллектуальный мир всё больше осознает, насколько являются тупиковыми технологии, основанные на использовании ископаемого топлива. Впрочем, читайте.
Почему люди не меняют свой технологический образ жизни, чтобы более гармонично вписаться в планетарные экологические системы? И мы не говорим только про общеизвестные экологически чистые технологии – использование солнечной, ветровой и океанической энергии приливов. Мы говорим о технологиях более революционных, для которых сжигание ископаемого топлива – это примитивный вчерашний день.
Одной из этих «новых» передовых технологий является автомобиль с силовой установкой, основанной на расщеплении и последующем сжигании молекул воды. Этот двигатель люди постоянно изобретают уже как минимум семьдесят лет, однако только сейчас, в 21-м веке нам постепенно становится всем понятно – почему эти изобретения недоступны для масс.
Проблема таких устройств в том, что они полностью изменят способы ведения бизнеса мировыми энергетическими компаниями. Возможно, они их даже разрушат. Поэтому такие изобретения являются первой угрозой для транснациональных корпораций в энергетической отрасли.
Реальность и практическая ценность этого автомобиля запатентована в патентных компаниях по всему миру. Нажмите ЗДЕСЬ, чтобы просмотреть патент японцев на свою водную энергетическую систему. Так же вы можете провести поиск по номеру патента ** 2006-244714 **. Наконец, те же документы находятся в файле Европейского патентного ведомства.
Вот короткое видео об этом японском чудо-автомобиле:
Итак, автомобиль есть. Он существует не в чертежах и на ютубе, а ездит по дорогам в реальности. Все его узлы построены и запатентованы. И это на 2008-й год!
Из этого следует, что в 2018-м году японская компания Genepax должна быть известна миру не меньше, чем первый в мире автомобильныйконвейер заводов Ford.
Но, люди 2018-го, вы что-нибудь слышали об это японской компании? Конечно, вы ничего не слышали. Через год после представления своего транспортного средства компания закрылась и разорилась.
Genepax – не единственная группа новаторов, которая пыталась продвинуть водородное топливо. Стэнли Мейер (Stanely Allen Meyer) – еще один гениальный изобретатель-одиночка. Он придумал и сам построил работающий на расщепленной воде автомобиль. Каким-то чудом история об этом человеке стала доступна для масс, попав в репортаж местной новостной станции в Огайо:
Вот еще один короткий клип Стэна, демонстрирующий его технологию:
Так что случилось с Стэнли Мейером? Его озолотили потенциальные инвесторы? Дали ему на постройку автомобилей много денег? Нет, все было не так.
Сначала, после появления в новостях Стэна и его роликов, какие-то “эксперты” стали назвать Стэна мошенником. А потом он зашел в ресторанчик на автопарковке, попил клюквенного сока, почувствовал себя плохо, вышел на улицу и там умер.
Вода является идеальным источником топлива. Молекула воды состоит из двух атомов водорода и одного атома кислорода. При пропускании через воду электрического тока с определенными параметрами, она распадается на составляющие её элементы:
При последующем горении кислорода и водорода в двигателе выход энергии получается в два с половиной раза выше, чем при сжигании бензина. При этом продуктом сгорания является водяной пар, возвращающий воду обратно в атмосферу.
Не так давно исследователи из Virginia Tech добывали водородную энергию из воды другим способом. Они обнаружили, что содержащаяся в растениях ксилоза расщепляет молекулы воды так же хорошо, как и электричество.
Еще одним направлением для исследований являются так называемые устройства свободной энергии, реализация которых станет грандиозным технологическим изменением в истории человечества. Однако вы даже не представляете, насколько огромное количество людей вовлечены в замалчивание и высмеивание информации об этих открытиях.
А финансирует эту массу уже совсем небольшая группа – люди, владеющие нефтяными, газовыми и угольными компаниями. Поэтому стоит ли удивляться, что все, кто добился какого-то успеха в альтернативной энергетике сталкивались с потоком несчастий. Их лаборатории непрерывно горели, их предприятия разорялись, а многие изобретатели вообще были искалечены или убиты.
Тем не менее, альтернативные технологии столь грандиозны, что в эпоху глобальных сетей и полной прозрачности, они рано или поздно, но проложат себе к людям дорогу. Только о технологиях электролиза воды с целью получения в качестве топлива водорода есть несколько десятков историй. Поэтому мы надеемся, что наша небольшая статья морально поддержит и вдохновит многих и многих изобретателей водородных автомобилей.
Как работает водородный двигатель и какие у него перспективы
С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.
Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.
История развития рынка водородных двигателей
Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.
Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.
В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.
В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.
Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].
Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.
В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.
В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.
Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.
Как работает водородный двигатель?
На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.
Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.
По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.
Где применяют водородное топливо?
Плюсы водородного двигателя
Минусы водородного двигателя
Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.
Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.
Водородный транспорт в России
В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.
В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.
Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.
Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».
В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.
Перспективы технологии
Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.
Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.
Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.
Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.
Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].
Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:
Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.
Автомобиль на воде своими руками.
из сети)
Бензиновый двигатель был изобретен очень давно, но используется в наше время. Люди всегда хотели, чтобы двигатель был мощным и экономичным. Было придумано много различных вариантов. Но не все используются в современном мире.
Здесь будет рассмотрена подача газа в двигатель. Этот газ называют по-разному: коричневый газ, газ Брауна, гидроген, водяной газ. Он делается на основе воды. Главное преимущество системы Брауна – улучшение экологии окружающей среды.
Бензин экономится из-за его лучшего горения. Часто только около 15% энергии бензина, превращается в механическую энергию в двигателе внутреннего сгорания. Если двигатель дополнить газом Брауна, то это приведет к тому, что топливо будет лучше сгорать, а доступная энергия из бензина преобразуется в механическую. И это не нарушает законов термодинамики.
Когда газ сгорает, получается сухой водяной пар. Он служит для того, чтобы очистить клапанно-поршневую группу от нагара, улучшить теплообмен между клапаном и седлом. В результате этого ресурс двигателя увеличивается. Из-за того, что расход топлива уменьшается, увеличивается пробег топливных форсунок, межсервисный пробег увеличивается, а также загрязнение масла уменьшается.
Один литр воды становиться шире на 1866 литра горючего газа. 30-40 часов можно проехать на каждом литре.
Чтобы в домашних условиях разложить воду на газ нужны: катализатор, дистиллированная вода, электричество, электроды.
Способов сделать автомобиль на воде своими руками множество. Но мы остановимся на одной, более простой конструкции.
Чтобы собрать генератор Брауна надо взять оргстекло 5 мл, 20 метров проволоки из нержавейки (марка 316), трубку из винила диаметром 4мл и шесть банок объемом 700 мл. Катализатором можно сделать КаОН или NaOH (резиновые перчатки используйте обязательно, так как эти вещества являются щелочью).
Можно использовать только одну банку, вместо шести, но обязательно учитывать следующие правила:
-надо, чтобы получилось строго определенное количество газа. Например, вам понадобиться 0,7-1,5 литра газа в минуту при условии, что у вас двигатель 1,5 л;
-температура электролита и количество газа сильно зависит от напряжения на электродах. Электролит может нагреться до 60 градусов уже через два часа при 12В питания. Это будет много, поэтому лучше подать 6В, а не 12В. Чтобы это сделать, нужно включить две банки одну за другой. Но тогда упадет количество производимого газа. Надо взять больше банок – лучше шесть (все параллельно и две последовательно).
Дальше все очень легко – надо вырезать пластинки и соединить их крест накрест. Потом обмотать их проволокой (2 электрода) и закрепить к крышке. На крышке нужно обязательно сделать штуцер, чтобы газ выходил и специальные болты, чтобы провода крепились к электродам. Электроды должны быть не замкнуты между собой, а крышка сидеть герметично при закрытии банки.
В банки нужно залить приблизительно пол-литра дистиллированной воды, предварительно добавив полчайной ложки КаОН. Получается, что 6 банок должны потреблять ток примерно 6В при правильном соединении. Эта система должна работать на любом автомобиле.
marafonec
Марафонец
Бег на месте к горизонту
Двигатель на воде давно создан — он запрещён! Чем заменяют подобные изобретения.
Водяной автомобиль существует гипотетически, и никак иначе! Но, это — неправда, в своей сути уже существует подобное изобретение. Как только, появляются новые и передовые технологии, затрагивающие интересы монополистов, — предприятия, осмелившиеся начать производство революционных технологий – разоряются.
Прорывная технология
В далёком 2008 году, японская компания Genepax, представляет на автомобильной выставке в Осаке, автомобиль, работающий на воде. Своё изобретение, предприимчивые японцы, запатентовали в Европейском патентном ведомстве. Можно вдохнуть свободно: наконец-то, прорыв!
Но, не тут-то было. Ходу этому изобретению не дали. Наоборот, изобретение вызывает, в определённых кругах, досаду и негодование. Оно способно негативно повлиять на способ ведения устоявшегося бизнеса владельцев компаний в энергетической отрасли.
Что же осмелились создать японцы — расплата за смелость
Японские изобретатели создали автомобиль, работающий на обычной воде. Вода может быть из крана или любого источника. В пути — это может быть и бутылка с водой, купленная в ближайшем магазинчике.
Для того, чтобы он начал движение, — ему нужно всего один литр воды, и один час езды обеспечен. Скорость автомобиля до 80 километров в час.
Воду нужно залить в бак, соединённый с устройством, которое посредством электрического тока, расщепляет воду на кислород и водород.
Так генерируется топливо – перекись водорода. Также генератор производит необходимую электроэнергию, извлекая из воды водород, высвобождая электроны.
Такое топливо даёт в два раза больше энергии двигателю, чем бензин. Продуктом распада этой реакции является, всего лишь – водяной пар.
Как в народе говорят: не прошло и года. Через год компания странным образом разоряется и, — перестаёт существовать.
Почему все молчат и ничего не делают?
Конечно, эта идея не нова! По всему миру изобретатели создают подобные прототипы, усовершенствуя и внося коррективы в своё идеальное транспортное средство.
Весь казус состоит в том, что такие автомобили единично передвигаются по дорогам, а оплаченное общество «экспертов», продолжает кричать о мошенничестве.
Есть и другой выход в создавшейся неудобной ситуации для монополистов. Он подразумевает: запугивание, подкуп, выкуп лабораторий, которые занимаются альтернативными источниками энергии.
Какой выход для всех нас?
И вот, в 2017 году – «прорыв»! Предприимчивые монополисты решились на инновации. Появляется «новый» серийный автомобиль компании Mercedes-Benz, работающий на водородном топливе.
Следом, не отстаёт японская компания Mirai, заявляя о безостановочном ходе своего автомобиля на 480 километров, который также заправлен водородом.
Да, все они будут заправляться водородом на специальных заправках (ведь, нужно же, что-то продавать, вместо бензина).
Как говорят, эти автомобили мощнее и их ждёт будущее, несмотря на то, что они более взрывоопасны, чем бензиновые.
PS: Так напоминает историю с электромобилями.
Как работает машина на воде(правда или ложь).
Когда вы встречаете кричащие заголовки о том, что очередной изобретатель изобрел машину, которая ездит на воде, вы конечно удивляетесь. Ну как вода может быть топливом? Вообще-то никак не может, но журналисты как всегда хитрят, чтобы привлечь внимание.
На самом деле все проекты двигателей на воде, к воде имеют отдаленное отношение. Конечно, вода, это соединение водорода и кислорода. И да, водород может быть топливом. Но чтобы разорвать межатомные связи и добыть из воды водород нужно затратить кучу энергии, такой электролиз происходит еще и с выделением тепла. А второе начало термодинамики гласит, что нельзя передать тепло от более холодного к более горячему. В общем, такая схема более чем неэффективна.
Так что же скрывается за водяными автомобилями? Дело в том, что в качестве топлива используется не вода, а водяные растворы солей. Если немного упростить, то двигатель работает на соленой воде. Что такое соленая вода? Это электролит, как в обычных батарейках. А из электролита извлечь энергию проще, чем из воды.
Фактически двигатель на соленой воде, еще используется название «потоковая батарея», работает по тому же принципу, что и топленный элемент использующий водород (есть еще топливные элементы использующие метанол, щелочи или кислоты).
Упрощенная модель выглядит так. Соляной раствор протекает через мембрану, где раствор вступает в реакцию окисления, производя отрицательно заряженные электроны и положительно заряженные, создавая при этом электрический ток. То есть имеем батарейку в которой соляной раствор не замкнут внутри оболочки и таким образом, залить в бак такого топлива можно столько, сколько позволит сам бак. Как и в случае с другими типами топливных элементов, в этом используется два типа жидкости, то есть заправлять придется 2 отдельных бака.
Один раствор нужен для реакции окисления, другой, для реакции восстановления. Таким образом, вся система представляет собой скорее аккумулятор, так как может быть перезаряжена, ну на худой конец жидкость в баки можно залить совсем новую.
Самое интересное, что история топливных элементов сама по себе не нова и. Принцип был открыт еще в 19-м веке, а первые работающие топливные элементы появились в 50-60-х годах двадцатого. Многие из них даже использовались для питания оборудования на космических аппаратах.
КПД топливных элементов и двигателей на их основе выше, чем у двигателей внутреннего сгорания, ведь превращение химической энергии в электрическую идет без сгорания топлива, а движущихся частей (на трение в которых расходуется энергия) в такой системе очень мало.
В отличие от водородных топливных элементов, вариант машины использующей растворы солей выглядит более перспективным, так как химическая промышленность и инфраструктура более готова к производству соляных растворов, чем к производству водорода.
Когда же мы машины начнут ездит на соленой воде, спросите вы? Они уже ездят. Компания nanoFlowcell из Лихтенштейна утверждает что уже сертифицировала свои автомобили Quant e-Sportlimousine, Quantino и Quant F для стран Евросоюза.
Динамика у e-Sportlimousine впечатляющая (для тех, кто привык к бензиновым двигателям), за 2,8 секунды электромобиль способен разогнаться до 100 при максимальной скорости — 350 км/ч, а ее двигатель способен развивать мощность 680 киловатт (что соответствует 920 л.с.) и крутящий момент 2900 Нм. При этом запас хода обещают в 600 километров на одной зарядке.
Quantino, модель предназначенная для «простых смертных» имеет более скромные характеристики — 143 лошадиные силы, но запас хода увеличен до 1000 км. Скорее всего именно скромный Quantino станет первым серийным «автомобилем на воде». О том, когда такие машины появятся на рынке, пока достоверной информации нет. Но видимо ждать осталось не долго.
Но если вы вообще не намерены ждать, то в интернете вы можете купить машинку игрушку которая ездит на растворе обычной столовой соли всего за пару долларов. Так сказать для «знакомства с технологией».